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a  b  s  t  r  a  c  t

This  review  is  written  to fulfill  the need  of  a comprehensive  guide  for the manufacture  of
porous polymer  particles.  The  synthesis  section  discusses  and  for  the  first  time  compares
microfluidics,  membrane/microchannel,  suspension,  dispersion,  precipitation,  multistage
polymerizations  and  a few  other  less  known  methods,  microfluidics  being  in  greater  detail.
The comparison  includes  on  one  hand  simplicity,  scaling-up  possibilities  and  the  ability  to
yield nonspherical  particles  for  these  methods  and  on  the other  hand  size,  size  monodisper-
sity,  pore  characteristics  and  chemical  functionality  of  the  obtained  particles.  This  extensive
comparison  certainly  makes  this  review  also  useful  for the preparation  of  nonporous  parti-
cles. In  addition,  functionalization/characterization  techniques  and  applications  of porous
Suspension–dispersion–precipitation–seeded
polymerization
Click chemistry

particles  are  also  discussed,  including  some  visionary  recommendations.  The  review  is
expected  not  only  to enable  individual  experts  of  each  field  to compare  their  methods
with  the  other  ones,  but  also to  be a handbook  for the  newcomers  to this  field  to  guide

them  from  the  synthesis  to the  applications.

© 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Porous polymer particles, especially the ones that are
spherical in shape, have been utilized in numerous appli-
cations for decades. They have been classified as macro-,
meso- and microporous depending on the size of the
pores, respectively >50 nm,  50–2 nm and <2 nm.  Two
main features, their porous nature and higher crosslinking
degree, differentiate them from gel-type polymer parti-
cles. These differences give rise to different characteristics
such as high surface area, ability to uptake various sol-
vents with different polarity and increased brittleness.
Size, size dispersity, chemical nature and functionality can
be mentioned as the other features that porous parti-
cles share with their nonporous counterparts, the gel-type
particles. The variety of applications requires different
combinations of the mentioned features. For instance,
while chromatography requires highly monodisperse (uni-

form in size, low coefficient of variation (CV)) sub 5 �m
beads, solid phase peptide synthesis (SPPS) is usually con-
ducted with 100–200 �m beads and monodispersity is
not that crucial. On the other hand, functionality is a
 . .  .  . .  . . . . .  . .  . . .  .  . . .  . . . .  . .  . . . .  .  . . .  .  . . . . . . .  .  . . . . . .  . . .  . . . .  .  . . .  . . . .  . 395

must for SPPS but can be undesired for chromatogra-
phy.

In general, polymer particles are produced by het-
erogeneous polymerizations using the immiscibility of
two  or more liquids. Suspension, dispersion, precipita-
tion, multistage, membrane/microchannel emulsification
and microfluidic polymerizations are the main techniques
to form porous particles. In all cases, the application should
be kept in mind prior to choosing the method of production.

With this review about porous polymer particles, we
would like to fulfill the need for a comprehensive guide, not
only for the experts but also for scientists that are new in
this broad field. The closest review on this topic by Okay in
2000 [1] deals more with particle characteristics, explains
the methods of production and characterization briefly
and lacks discussion about applications. Although in liter-
ature there are several reviews for polymer particles (not
specifically porous), the older ones [1–3] merely cover the
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conventional methods (suspension, emulsion, dispersion,
precipitation, seeded) while the new ones [4–6] only focus
on the new methods (membrane/microchannel emulsifica-
tion and microfluidics). To the best of our knowledge, we
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athered in this review for the first time all the manufac-
ure methods, including some less known methods. Novel
xplanations are delivered about these techniques by mak-
ng use of schematic descriptions. Moreover, we focused

ore on the chemistry viewpoints using basic phenom-
na, rather than highlighting the technical aspects of the
entioned methods.
The review also includes detailed characterization,

unctionalization and application sections. The function-
lization section has the intention to give a summary of
hat is flourishing in polymer science as efficient chemical

ransformation methods, including click chemistries. This
ection also includes surface- and pore-size-specific func-
ionalization. Together with current usage areas, future
ecommendations are given in the applications section.
ast but not least, nonspherical particles are also discussed
hroughout the text since this is an immature field for
orous particles with lots of opportunities waiting to be
xploited to our belief.

Porogens are the substances yielding the porous nature
f particles. Throughout the text, we will avoid using the
idely applied term ‘porogenic solvent’ since gasses and

olids can also be used as porogens. The term ‘inert diluent’
s also not proper to our understanding since we  believe
hat there is room for innovations by making use of reac-
ive porogens and that immiscible porogens cannot really
ilute a monomer mixture. It is also worth to mention that
he term ‘monomer’ will not necessarily exclude crosslink-
rs; all polymerizable species can be denoted together as
he monomer mixture in this text. Moreover, we  will focus
n particle formation via vinyl polymerization, which con-
titutes the largest part of the field. Inorganic, hybrid and
on-crosslinked polymer particles (produced via precipi-
ation from polymer solutions) are kept out of the scope of
his manuscript.

. Synthesis

.1. An introduction to the production of porous polymer
articles

For decades chemists learnt how to use physical prin-
iples to design their reactors, rather than chemical
rinciples. Temperature, pressure, viscosity, stirring and
uid dynamics are the important principles to be men-
ioned first. Liquid immiscibility is another ‘tool’ that
hemists are familiar with and make it serve to their quests,
or instance to produce regular particulate materials. From
aily life, we all know that oil and water are immiscible and
ill phase separate. When it is desired to form a dispersion

f one of the two liquids in the other, which is called an
mulsion, a sufficient amount of emulsion stabilizer should
e added together with applied shear. The words emulsi-
er, surfactant, surface active molecules and many more
re all used to describe emulsion stabilizers that are read-
ly present in our everyday life, such as soap and detergents.
mulsifiers are molecules that have both hydrophilic and

ydrophobic parts, recognized by water and oil, respec-
ively. When oil and water are mixed in the presence of such
n emulsifier, the emulsifier molecules cover the surface
f the dispersed phase droplets by reducing the interfacial
ymer Science 37 (2012) 365– 405 367

tension. Milk is a well known example of a stable emul-
sion in nature where oil (butterfat) droplets are dispersed
in water by the aid of phospholipids and proteins.

Already in 1912, chemists realized that an emulsion
can be utilized to produce polymer particles [7].  Keeping
water as the continuous phase, the discrete phase could
be droplets of hydrophobic monomeric species, which
can be converted into polymer particles after polymer-
ization. The emulsion stabilizer can be a soap molecule,
a polymeric stabilizer or a natural surface active material
such as gum, starch or gelatin. A free radical polymeriza-
tion initiator is used and can be added to either phase.
These ingredients and their immiscibility are the basis of
heterogeneous polymerizations (also called heterophase
polymerizations), with the exception of dispersion and pre-
cipitation polymerizations where the initial mixture starts
from a completely homogeneous solution, which will be
discussed later in this section. It is also worth to men-
tion that water soluble monomers can be polymerized
as discrete phase droplets in an organic solvent (the oil
phase). These types of W/O  systems are generally denoted
as inverse heterogeneous polymerizations.

The importance of controlling the interfacial tension
is already discussed in the introduction paragraph. How-
ever, it is also necessary to stress that the spherical shape
of the monomer droplets is caused by this interfacial
tension. Indeed, the sphere is the shape with the low-
est surface to volume ratio, which is the reason why  in
most cases polymer particles are spherical in shape, thus
explaining the difficulty to make regular nonspherical par-
ticles.

Emulsion polymerization, mini- and microemulsion
polymerization, suspension polymerization, dispersion
polymerization, precipitation polymerization, membrane
emulsification and microfluidics are the techniques uti-
lized for polymer particle manufacture. With exception of
emulsion, miniemulsion and microemulsion polymeriza-
tions, all these polymerization methods will be covered by
this review as emulsion polymerization is not readily used
to form porous particles [8].  This is ascribed to its unique
mechanism where the location of initiation, chain growth
and largest monomer presence are all different from each
other [3].

Nevertheless, emulsion polymerization is widely (but
not only) utilized as the first stage of seed polymerizations
that can be defined as multistage heterogeneous polymer-
ization techniques where almost any combination of the
aforementioned techniques can be used. In this two stage
approach, first nonporous ‘seed’ particles are produced,
which are the initial relatively small monodisperse parti-
cles. These seed particles are subsequently enlarged in a
second stage. As a result, seed polymerization techniques
will also be covered. As mentioned before, this review
will also cover microfluidics in detail since this is the
most recent among all heterogeneous polymerization
techniques and allows the synthesis of unprecedented
structures such as regular nonspherical forms or core–shell

structures. This is an area of research in which also our
own research group has been contributing recently
[9,10].  The following sub-section describes suspension
polymerization together with all main pore formation
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mechanisms/methods, which are also applicable in the
other techniques including microfluidics.

2.2. Suspension polymerization and general pore
formation techniques

In terms of physical categorization, whereas an emul-
sion denotes a liquid/liquid dispersion, a suspension
denotes a solid/liquid dispersion. However, this does
not apply for heterogeneous polymerizations since both
emulsion and suspension polymerizations start with liq-
uid/liquid mixtures in the beginning and end up as
solid/liquid dispersions. A suspension polymerization
starts with dispersing monomer droplets in a continuous
phase with the aid of surfactants such as sodium dodecyl
sulfate (SDS) (Fig. 1). A monomer soluble initiator is added,
aiming to drive both initiation and chain growth inside the
monomer droplets. This is the main difference with the
emulsion polymerization where a continuous phase sol-
uble initiator is used so that the mechanism completely
changes, for which we refer to other literature [3].  More-
over, radical trapping species such as NO2

− salts, can also be
added to suspension polymerization recipes [11] to prevent
nucleation in the continuous phase [12].

Suspension polymerization can be considered as the
least complicated heterogeneous polymerization tech-
nique in terms of its mechanism. As depicted in Fig. 1, there
are the discrete phase droplets with monomeric species
(monomers and crosslinkers), initiator and porogen on one
hand and there is the continuous phase with dissolved
surfactant and/or polymeric stabilizers on the other hand.
The molecular transfer between the two phases needs to
be minimized in suspension polymerization because ini-
tiation and propagation all take place in the monomer
droplets. Two parameters are of utmost importance: sol-
ubility of monomers in the continuous phase and the role
of surfactants and stabilizers. The monomer solubility in
the continuous phase becomes an important issue in sys-
tems where the monomer to continuous phase ratio is
low. If there are no phase transfer limitations, a significant
amount of monomer would be present in the continu-
ous phase at the start of the polymerization reaction and
will transfer back to discrete phase droplets by time since
polymerization consumes the monomers in these droplets.
This process may  result in retardation of the polymeriza-
tion. Also the porous nature of the final particles would
be affected since porosity depends very much on the con-
centration difference between monomers to porogen(s).
Nevertheless, a porogen can also be used to increase the
partition of a water soluble monomer in the discrete phase
droplets where the continuous phase is water. For example,
Frechet and co-workers managed to polymerize a com-
pletely water soluble crosslinker in a “classical” suspension
polymerization by using cyclohexanol as the porogen [11].

In suspension polymerization, continuous mechanical
agitation with a constant speed is applied throughout
the whole process to keep the monomer droplets well

dispersed (Fig. 1). However, droplet collision and break-
up cannot be prevented. Since the droplet formation
is governed by the chaotic agitation and since droplet
collision/break-up takes place continuously throughout
lymer Science 37 (2012) 365– 405

the process, particles obtained via suspension polymeriza-
tion are almost always polydisperse. Notwithstanding the
fact that this polydispersity is the main drawback of sus-
pension polymerization, this technique is widely applied
in industry because of the low cost and upscaling possibili-
ties. The obtained particles are sieved to specific size ranges
when needed. The agitation speed and the shape of both
the reactor and the mechanical stirrer are the main factors
influencing the size distribution and size of final particles,
without forgetting the importance of the viscosity values
of both phases and surfactant concentration that tunes the
interfacial tension.

Here we  will discuss the general pore formation mecha-
nisms which can be directly applied to the other techniques
as well, especially membrane/microchannel emulsification
and microfluidics. Other techniques about pore formation,
which are not applicable to suspension polymerization, are
discussed within the relevant sections.

2.2.1. Using a good solvent as the porogen (�-induced
syneresis)

Polymerization of styrene in water can be accepted
as a text-book example of the suspension polymeriza-
tion. As an example, the discrete phase may  consist of
styrene (monomer), divinylbenzene (DVB, crosslinker),
2,2′-azobis(2-methylpropionitrile) (AIBN, initiator) and
toluene (porogen), whereas the continuous phase can be
an aqueous poly(vinylalcohol) (PVA, emulsion stabilizer)
solution. Toluene is a thermodynamically good solvent for
the polymer, which means that it can readily swell the
final crosslinked beads. A good solvent is characterized by
a Hildebrand solubility parameter close to that of the poly-
mer  [2]. Inside every discrete phase monomer droplet, a
continuous network grows by addition of monomer and
after a certain time, the network becomes incapable of
absorbing more toluene due to an increasing amount of
crosslinking. A precipitation or deswelling (phase separa-
tion) occurs at this point, which is after the gelation point
of the network. It is this phase separation that yields the
porous nature of the particles. The amount of crosslinker is
of great importance as it determines the time of precipita-
tion and the extent of porosity. Micro- and mesopores are
predominant, resulting in beads with high surface area val-
ues but low pore volumes [2]. This type of pore formation
is called �-induced syneresis [1].

2.2.2. Using a nonsolvent as the porogen (�-induced
syneresis)

On the other hand, if a nonsolvent for the final poly-
mer  is used as a porogen, such as n-heptane[13] instead
of toluene in the previous case, pore formation occurs
via �-induced syneresis [1]. In this case, phase separa-
tion occurs before the gelation point since heptane cannot
swell/dissolve the growing polymer chains. At the start
of the initiation, separated smaller particles of polymer
(nuclei) grow as a discontinuous phase (early phase separa-
tion due to the nonsolvent) inside every discrete monomer

phase droplet. These nuclei agglomerate via inter-nuclei
crosslinking and the final bead is formed. In contrast to the
previous case, macropores are predominant, resulting in
particles with a significantly lower surface area but larger
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Fig. 1. Basic depiction of the s

ore volumes [2].  Moreover, suspension polymerization
f monomers like vinyl chloride and acrylonitrile yields
ntrinsically macroporous particles without the addition of
n external nonsolvent due to the fact that these monomers
annot dissolve/swell their corresponding polymers [7,14];
his could be referred to as the ‘self-porogen’ effect.

.2.3. Using linear polymers as the porogen
Various polymers and oligomers can also be used, gen-

rally together with a solvent, as the porogen. Also in this
ase pore formation occurs via �-induced syneresis [1].
xamples of polymers and oligomers used as porogens
nclude poly(methyl methacrylate) (PMMA) [15], PS [16],
oly(ethylene oxide) (PEO) [17], poly(propylene oxide)
18] and poly(dimethylsiloxane) (PDMS) [18]. It is impor-
ant to note that Okubo et al. [19,20] reported that the
mount and the nature of polymeric porogen may  either
nduce a porous or a nonporous hollow final structure. The
ioneers of methacrylate based porous particles, Svec and
orák, reported the differences between the use of a good

olvent (toluene), nonsolvent (dodecanol) and a polymeric
orogen (polystyrene in toluene, 15%) for the synthesis of

 copolymer of glycidyl methacrylate (GMA) and ethylene
lycol dimethacrylate (EGDMA) [2].  In the order of good
olvent, nonsolvent and polymeric porogen, the specific
urface area decreases below 1 m2/g whereas the size of
icroglobules and total pore volume increase (Fig. 2).
Macintyre and Sherrington [18] reported that a bimodal

ore size distribution can be obtained in some cases by
sing a mixture of toluene (good solvent, inducing microp-
res) and PDMS (polymeric porogen, inducing macropores)
or a bead composed of DVB alone. Although it should be
gainst expectations that from a single porogen the com-
ination of high surface area and high pore volume could
e reached, Liu et al. [21] found out that polyDVB particles
xhibit a surface area equal to 720 m2/g, together with a

ery high pore volume of 68%, when prepared in the pres-
nce of 1-chlorodecane alone, which is a nonsolvent for
olyDVB. However, the authors were unable to explain this
nexpected behavior.
on polymerization technique.

An important problem of using a nonsolvent as the
porogen is the possibility of the formation of a dense and
often impermeable polymer layer on the surface of par-
ticles, although the internal structure is highly porous. In
literature, this nonporous layer is referred to as either a
“skin” [22–25] or “shell” [26,27]. As mentioned before, a
nonsolvent should possess a solubility parameter value
that significantly differs from that of the polymer. How-
ever, when the difference in the solubility parameter is
too large, “skin” formation is promoted, as reported in
detail by Kumacheva and co-workers [28]. In their case,
the difference in the solubility parameter was  increasing
by a decreasing polarity of porogen. Since the continuous
phase was water in their system, highly nonpolar poro-
gens disliked to be present in the water/oil interface due
to the high interfacial tension. Thus, the interface became
rich in monomer and polymer, resulting in a “skin” layer,
while the interior was  porous. On the other hand, more
polar solvents resulted in “skin”-free macroporous par-
ticles. Moreover, they provided an excellent solution to
this problem by decreasing the interfacial tension without
changing the highly nonpolar porogen. They lowered the
interfacial tension by decreasing the polarity of the con-
tinuous aqueous phase or by adding a specific surfactant
next to a polymeric stabilizer. However, it should be noted
that this solution avoiding the skin formation may  not be
valid for every monomer/continuous phase system since
the interfacial tension and solubility parameters may not
follow the same trend. Although the technique utilized was
microfluidics in this case [28], these results should also be
applicable to suspension polymerization. The similarities
between the two  techniques will be discussed further on
in the microfluidics section.

2.2.4. Using water as the porogen
Unlike a nonsolvent, solvent or a polymer, a porogen
that is even immiscible with the initial monomer mix-
ture can also be utilized to obtain porous particles. The
most common example of such strategy is using water
as the porogen. A water-in-oil-in-water (W/O/W) double
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Fig. 2. Scanning electron microscopy (SEM) images from surface of EGDMA–GMA (24–16) beads prepared by using different porogens at 60% ratio: (A)
toluene (good solvent), (B) dodecanol (nonsolvent), (C) PS solution in toluene (polymeric porogen, 50,000 g/mol, 15%). From left to right, pore size increases

 GmbH 
and  total surface area decreases.
Reproduced from [2] with permission. Copyright 2005 Wiley-VCH Verlag

emulsion is formed by adding oil soluble surfactants to
the discrete monomer (oil) phase. Water is absorbed from
the continuous water phase by the monomer droplets as
a result of the stabilizing effect of the oil soluble surfac-
tants [29]. Although porogen water droplets should have
been separated initially inside the monomer phase, highly
porous polymer beads with pore sizes around 80 nm and
surface area values reaching up to 200 m2/g (proving the
interconnectivity of pores) are obtained after polymeriza-
tion. The same authors also published that a combination
of surfactants can produce hollow porous beads (Fig. 3(B))
[30]. Although produced by a uniquely facile template-free

approach, such hollow porous particles were not further
discussed in their paper [30]. However, the same authors
published later that hollow porous particles can also be
obtained via addition of a W/O  emulsion (the oil being the

Fig. 3. (A) Porous and (B) hollow porous particles prepared by aqueous suspensi
monomer soluble surfactants. Monomer soluble surfactants captured water from
The  hollow core only formed with specific surfactants. Scale bars indicate 10 �m
Adapted from [30] with permission. Copyright 2007 Elsevier.
& Co. KGaA.

monomer phase) into a second water phase [31], thanks to
ripening.

2.2.5. HIPE technique
The highest amount of a liquid dispersed as monodis-

perse spherical droplets in another liquid can be 74 vol%
[32]. However, by a careful choice of the surfactant and
dropwise addition of the internal phase over a vigorously
stirred continuous phase (including the surfactant), high
internal phase emulsions (HIPEs) can be obtained with
internal phase volumes exceeding 99% [33] because of
the nonspherical packing of internal phase droplets [32].

When the continuous phase is polymerized, a poly(HIPE)
is obtained, i.e. a very light, highly porous material with
fully interconnected pores exceeding 10 �m in diame-
ter [32,33].  Particulate poly(HIPE) with regular shapes

on polymerization, utilizing water as the porogen with the aid of various
 the continuous phase, resulting in the hollow and/or porous structure.

.
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Fig. 4. The surface of (A) a poly(HIPE) bead [36] and (B) a water expanded
PS bead [40] both prepared by suspension polymerization using water as
the  porogen. While the largest pore is only ∼5 �m for the poly(HIPE) bead,
the water expanded PS bead possesses pores as large as 100 �m.
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dapted from [36,40] with permission. Copyright 2002 Elsevier; Copy-
ight 1999 Elsevier.

as been a challenge for scientists due to the difficulties
aced during forming HIPE droplets in a second continu-
us phase (double emulsion). Nevertheless there are few
eports in patents [34,35] and in open literature [36–39]
f polymerizing HIPE formulations in a suspension media
ielding polydisperse beads with ultra large pore sizes
Fig. 4(A)). Deleuze and co-workers reported [36] a surface
rea value of 124 m2/g when they added 20% petroleum
ther (a volatile porogen) to the monomer phase of the
IPE whereas the surface area was 20 m2/g in the absence
f petroleum ether. This is another example where a com-
ination of porogens is utilized to obtain different pore
izes. Based on the W/O/W double emulsion approach,
elissen and co-workers [40] prepared water absorbed
S beads. The obtained beads were heated above their
lass transition temperature in order to use the entrapped
ater molecules as blowing agents, which resulted in pores

eaching up to 100 �m (Fig. 4(B)). In this example water
eplaces the traditional blowing agent pentane [41], which
esults in avoiding the use of volatile organic compounds.

.2.6. Using solids as the porogen
Another type of immiscible porogens can be a solid

nstead of water, which results in the realization of solid-
n-oil-in-water (S/O/W) dispersions. Pores are formed after
he removal of solid particles embedded on polymer beads
ia washing or etching. Washing is also needed to reveal
he porous structure in the previous cases where a liquid
orogen is used, with the exception of volatile solvents,
hich can be removed via evaporation. As an example for

/O/W dispersion, Wu  and Pang dispersed ∼0.8 �m CaCO3
articles in a EGDMA–GMA monomer mixture and sus-
ension polymerized this S/O dispersion in water [42].
fter removal of CaCO3 via HCl etching, the beads exhib-

ted pores as large as 10 �m and a surface area value of
9 m2/g. In another report [43], a mixture of solid (CaCO3),
onsolvent (dodecanol) and good solvent (cyclohexanol)
orogens are utilized all together for the suspension poly-

erization of the same EGDMA–GMA monomer mixture.

ogether with a total surface area of 91 m2/g, the formation
f a bimodal distribution of micropores (10–90 nm)  and
acropores (180–4000 nm)  is observed. We  would like to
ymer Science 37 (2012) 365– 405 371

stress here that, in principle, also gas forming reactive poro-
gens can be used to obtain larger pores but no example was
reported to the best of our knowledge.

For the above described strategies on pore formation
in suspension polymerization, the continuous phase was
water in every single case. Water soluble monomers are
also suspension polymerized but in that case the continu-
ous phase is an organic solvent. Thus the overall medium
should be a W/O  emulsion, which is also referred to as an
inverse suspension polymerization. The aforementioned
porogen types are applicable (at least theoretically) to
inverse suspension polymerization under the condition
that the porogen is chosen accordingly [44–46].

For the above mentioned pore formation techniques,
the comparison of the size of the particles follows the trend
of their pore sizes. Whereas porous beads in the size range
of a few microns [2] can be prepared via syneresis tech-
niques, poly(HIPE) beads need to be over 100 �m [36] and
water expanded polystyrene beads were prepared with a
diameter range above millimeter scale [40] and pores as
large as 100 �m.  As a rule of thumb, particles prepared
via suspension polymerization (in the range of 5–2000 �m
[3]) are always larger than those prepared via other tech-
niques. However, it is possible to provide smaller diameters
via microsuspension polymerization. In this case, after the
ingredients are mixed, a high shear force such as ultra-
sonification is applied prior to the start of polymerization,
forming finer monomer droplets [22,47].

We  would like to note that in suspension polymer-
ization, every single monomer droplet behaves like a
microreactor of a bulk polymerization if a porogen is
absent. These droplets will become microreactors of a solu-
tion polymerization where a good solvent is added as
porogen. Addition of a poor solvent will make the droplets
microreactors for precipitation polymerization. In the case
of HIPE, droplets can be regarded as microreactors of mono-
lith polymerization.

2.3. Precipitation and dispersion polymerizations:
homogeneous at the start

In contrast to all other techniques described in this
review, dispersion and precipitation polymerizations start
as completely homogeneous solutions. However, they are
still classified as members of heterogeneous polymeriza-
tions since phase separation takes place in an early stage as
a result of the polymerization. Although the two techniques
have similar mechanisms, there are two  main differences:
(1) a stabilizer is used in dispersion polymerization but
not in precipitation polymerization and (2) a crosslinker
is necessary and used in large proportions in precipita-
tion polymerization, while crosslinkers are most of the
cases omitted in dispersion polymerization. As a result
of the second reason, dispersion polymerization is mostly
used for non-crosslinked, nonporous particle production.
On the other hand, precipitation polymerization is more

suitable for highly crosslinked and porous particles. The
most important and common feature of the two techniques
is the production of monodisperse particles in the range of
0.1–10 �m
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Fig. 5. Schematic description of the stages of precipitation polymerization for porous particle production. (A) Initially, only crosslinker and initiator
 because
wollen 
molecules are in the medium. (B) Oligomers and nuclei are being formed
adding  monomers and oligomers from the medium. In reality, there is a s

2.3.1. Precipitation polymerization
As depicted in Fig. 5(A), precipitation polymerization

starts as a homogeneous solution of crosslinker and ini-
tiator in a medium composed of a near �-solvent (for
the crosslinker) and porogen(s). The near �-solvent later
becomes the continuous phase as the precipitation of par-
ticles starts. Precipitation polymerization requires a high
amount of crosslinker and in many cases DVB is poly-
merized alone [48,49]. It should be noted that commercial
DVB is technical, composed of either 55% or 80% DVB with
the rest being mostly ethyl styrene monomer. Methacry-
late crosslinkers are also polymerized via precipitation
polymerization with a low percentage of added monomer
[50,51].  As a result, precipitation polymerized particles
are rich in remaining double bonds that can be efficiently
utilized in post-functionalization [52] (see further func-
tionalization section).

As the polymerization starts, oligomers and nuclei
are being formed (Fig. 5(B)). Whereas the oligomers are
still soluble in the medium, the nuclei precipitate result-
ing in a heterogeneous mixture. The nuclei are swollen
by porogen (shown as the yellow background) and the
medium (the continuous phase) becomes less rich in
porogen. Although no stabilizer is used, the nuclei are sta-
bilized by a layer of oligomers that are swollen by the
medium. The polymerization continues at the particle-
continuous phase interface [53]. The nuclei do not overlap
but only grow by adding fresh monomer and oligomers
from the medium (Fig. 5(C)). The porogen that is ini-
tially absorbed by the growing nuclei phase separates
from the particle and forms the pores. As a result of
the fact that the nuclei do not overlap, highly monodis-
perse particles, generally in the size range of 1–5 �m,  are
obtained [54]. Recently, monodisperse nanoparticles are

also reported [50]. As one of the unique properties of
this technique, particles grow constantly and the polymer-
ization can be stopped when the desired particle size is
reached.
 of radical polymerization. (C) As the reaction continues, nuclei grow by
layer of oligomers around the nuclei.

It has been reported earlier that, whereas a good sol-
vent as the porogen gives only small pores (below 10 nm)
and thus very high surface area values (800 m2/g), a poor
solvent results in larger pores and thus lower surface
area values [48]. This theory seems to overlap with the
�-induced and �-induced synereses, as explained in the
previous section. However, a latest report on precipitation
polymerization of DVB does not coincide with the initial
results. In this paper, 1-decanol resulted in a surface area
as high as 419 m2/g and lower pore sizes (2.7 nm), which
were 29.8 m2/g and 5.9 nm respectively when toluene
was  used [55]. The effect of porogens on the structure
and porous character of the final beads prepared from
DVB/vinylbenzyl chloride mixture can be observed from
Fig. 6 [56].

Precipitation polymerization needs highly diluted
monomer concentrations (2–5%), i.e. a high amount of
continuous phase, which is a drawback of this method.
However, Li and Stöver reported the repeated usage of
the continuous phase for subsequent precipitation poly-
merizations while still obtaining monodisperse particles
[48]. The polymerization is rather slow due to the high
monomer dilution in comparison to suspension polymer-
ization, where high local monomer concentrations are
achieved. It is also important to note that only gentle stir-
ring or shaking is applied to avoid coagulation.

Polymerization of DVB in an acetonitrile/toluene mix-
ture together with AIBN [48,57] could be considered as the
basic procedure for precipitation polymerization. Acetoni-
trile is the mostly used continuous phase in precipitation
polymerization, next to the other solvents [58,59]. Toluene
is the porogen, which can form up to 40% of the continu-
ous phase [48]. In addition, depending on the crosslinker
and monomer, the porogen can be a solvent, a non solvent

or even a polymer [55,56]. Whereas the thermal initiation
is the most applied route, there is a recent report about
ultraviolet (UV) initiated precipitation polymerization [55]
to obtain porous particles.
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ig. 6. Effect of the media on porosity of DVB/vinylbenzyl chloride (56/4
0/20,  (B) acetonitrile/toluene/cyclohexanol 70/15/15, (C) acetonitrile/to
eproduced from [56] with permission. Copyright 2008 Elsevier.

.3.2. Dispersion polymerization
Dispersion polymerization is generally used to obtain

on-crosslinked and nonporous particles [60–63].  As seen
rom Fig. 7(A), a monomer, initiator, porogen and a poly-

eric stabilizer is dissolved generally in an alcohol with
echanical stirring, such as in the case of the suspension

olymerization setup (Fig. 1). With the start of heating, the
nitiator decomposes to form radicals and oligomers start
o form, which are still soluble in the media (Fig. 7(B)). This
omogeneous mixture becomes cloudy as the oligomers
row and precipitate, forming the nuclei of the final parti-
les (Fig. 7(C)). The nuclei are stabilized by the polymeric
tabilizer added in the beginning of the reaction. If no exter-
al intervention is made at this stage, such as addition of
ther species, nuclei grow by capturing new monomers
nd oligomers/polymers from the medium. The crosslinker
hould be added only after the nucleation stage (Fig. 7(C)),
hich corresponds to less than 1% monomer conversion

64]. By the addition of crosslinker, porogen swollen parti-
les continue to grow and crosslink (Fig. 7(D)), resulting in
orous particles.
The reason that the crosslinker should be introduced
ater is well explained by Winnik and co-workers [64]
hey reported that crosslinkers and polar monomers
ignificantly influence the particle growth and the

ig. 7. Schematic description of the stages of dispersion polymerization. (A) Initia
he  medium. (B) Oligomers are forming, which are still soluble in the medium. (C
olymer chains precipitate and form the nuclei that are stabilized by the polym
articles grow by capturing monomers and oligomers from the medium.
icles prepared via precipitation polymerization. (A) Acetonitrile/toluene
decanol 70/15/15.

monodispersity may  be lost in such cases. The most impor-
tant stage for the monodispersity of final particles was
found to be the nucleation step. After the nucleation,
crosslinker and polar monomers can be added and perfectly
monodisperse crosslinked particles are obtained.

The medium is an alcohol such as EtOH and MeOH  in
dispersion polymerization procedures, although other pos-
sibilities have been recently reported [61]. In a report on the
preparation of porous poly(methacrylic acid) particles via
this route [65], 11 wt% of methacrylic acid was  polymerized
in a chloroform/EtOH mixture (∼5/1). The obtained porous
particles were then crosslinked [65,66]. The monomer con-
centration is much higher in the medium compared to
the precipitation polymerization procedures because of the
high amount (6.5 wt%) of polymeric stabilizer used.

2.4. Multistage heterogeneous polymerizations

2.4.1. Seeded suspension polymerization
Ugelstad et al. [67] discovered in the late 1970s

that polymer particles can absorb slightly hydrophilic

molecules up to 100 times of their own volume and form
stable emulsions. An important observation was that the
final droplet size and size distribution were completely
determined by the initial polymer particles, the so called

lly monomer, initiator, porogen and polymeric stabilizer are dissolved in
) Nucleation stage at 1% monomer conversion. As their length increase,
eric stabilizer. At this stage, a crosslinker may  be added if desired. (D)
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Fig. 8. Schematic description of seeded suspension polymerization for obtaining porous particles. In the first stage, submicron seeds are prepared from
at is be

nitiator

colloidal crystal particles were prepared by the pioneering
work of Velev et al. It should be noted that these supraballs
are unique in the sense that the globular inner structure and
pores are perfectly monodisperse, which is not the case for
styrene  by emulsion or dispersion polymerization. In the second stage, th
(i.e.  dibutyl phthalate) and then swollen with new monomer, crosslinker, i
particles.

“seeds”. A polymerization in the second stage yields much
larger monodisperse latexes provided that the seeds are
monodisperse. This is the basis of so called seeded (also
called templated) suspension polymerizations today.

Seeds need not only to be monodisperse but also non-
crosslinked to allow swelling in the second stage. (Soap
free) emulsion and dispersion polymerizations are read-
ily utilized to obtain seeds. Since emulsion prepared seeds
are generally in the submicron range, they are suitable
for obtaining particles up to 10 �m in diameter after the
suspension polymerization stage [68,69]. On the other
hand, dispersion polymerized seeds can be in the range of
1–20 �m,  thus 10–200 �m particles can be obtained in the
suspension polymerization stage [70–79].  Note that a vol-
ume  enlargement of 106 times would be needed for a 1 �m
seed to be swollen by the new monomer(s) to 100 �m.

The approach of Frechet and co-workers [12] is a good
example of seeded suspension polymerization as depicted
in Fig. 8. Polystyrene seeds with a diameter of 560 nm were
first prepared by emulsifier-free emulsion polymerization.
In the second stage, these seeds are first swollen by dibutyl
phthalate in an aqueous emulsion, which is necessary
to “activate” [2] the seeds prior to swelling them with
the monomers. The amount of activator used was 6–7
times higher in volume compared to the seeds. Finally,
these activated seeds were added to a new aqueous emul-
sion where the dispersed phase consisted of propargyl
acrylate and EGDMA as monomers, a mixture of cyclohex-
anol/dodecanol (9/1) as solvent and nonsolvent porogens
respectively and AIBN as the thermal initiator. The aqueous
phase contained PVA as the stabilizer, SDS as the surfactant
and NaNO2 as the radical trapping species. At the end of
this successful second suspension polymerization stage,
5 �m monodisperse functional (alkyne groups) beads
were obtained with surface area values reaching up to
243 m2/g and a pore size of 10 nm.  In this example, a

volume enlargement of 794 times is achieved without sac-
rificing the monodispersity. In addition, it is also reported
by Margel and co-workers [80,81] that porous particles
can be prepared by just dissolving the PS seeds after the
ing suspension polymerization, seeds are first swollen with an activator
 and porogens. Polymerization results in larger, porous and monodisperse

second stage. In this case the swelling medium included
DVB however excluded the use of any porogen. A surface
area of 630 m2/g is obtained since PS chains distributed in
the DVB network acted as a polymeric porogen.

The power of seeded suspension polymerization is that
the advantages of two  techniques can be combined, i.e.
the monodispersity of emulsion/dispersion polymeriza-
tions with porosity-functionality-larger size of suspension
polymerization. On the other hand, this is ultimately a
multi-step approach and thus needs the knowledge and
experience of the two  applied polymerization techniques
in order to obtain the desired particles.

2.4.2. Supraballs: seed assembly
Supraballs are spherical colloidal crystals obtained via

assembly of monodisperse seeds (0.1–2 �m latex) into
larger spheres [82,83] (Fig. 9). To achieve those structures,
droplets of concentrated seed suspensions are generally
formed in a continuous phase [84,85] or even on a superhy-
drophobic surface [86]. Drying (often spontaneous) yields
unique assemblies of the latex. Spherical [87], dimpled [85],
hollow [84], torroidal [88], eyeball [89] and patchy [88]
Fig. 9. SEM images of supraballs obtained via nano to micro assembly.
Seeds are hexagonally packed resulting in uniform pores and uniform
inner structure.
Adapted from [83] with permission. Copyright 2009 Elsevier.
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ticles in dispersion polymerization if present at the initial
mixture. Finally, these new hydrophilic seeds were swollen
with butyl methacrylate and dodecane in the third disper-
sion polymerization stage and polymerized. Removal of the

Fig. 10. “Golf ball-like” particles by Okubo et al. via a triple stage disper-
sion polymerization approach. Dodecane used in the last stage resulted
M.T. Gokmen, F.E. Du Prez / Progre

he other beads prepared by any other method. This “glob-
lar monodispersity” may  lead to interesting performances
uch as in chromatography.

The above mentioned examples of supraballs are assem-
led only via drying, which makes them unstable against
hysical manipulation or solvents. In this respect, Weitz
nd co-workers reported the preparation of colloisodomes
90]. PS seeds were assembled in the water/oil interface and

erged by sintering at 105 ◦C for 5 min. The obtained col-
oidosomes were hollow since a low concentration of seeds

as utilized. The size of the pores on the colloisodome
hell was controlled by sintering time and the size of the
eeds used. The authors also showed that these colloido-
omes selectively allow other particles to enter the core
f they are smaller than the pores. These colloisodomes

ere physically stable but not stable against organic sol-
ents. Later, Sherrington and co-workers [91] managed to
ssemble 200 nm styrene/MAA latex seeds into aggregates
n the second stage where toluene is the continuous phase
with an added surfactant). The water phase inside the seed
ggregates was  removed at 105 ◦C by Dean–Stark distil-
ation, which yielded melt fusion of the nano-seeds into
30 �m polydisperse supraballs. Although the seeds were
on-crosslinked and no chemical reagent and monomer
ere added in the second stage, the obtained supraballs
ere stable, both mechanically and towards several sol-

ents. This was explained by the authors as a result of
 crosslinking process taking place during the heat treat-
ent. Surface area values of 9–16 m2/g and pore size values

f 3–12 nm have been reported.
In yet another contribution [92], the Sherrington group

lso managed to assemble 1 �m particles into larger supra-
alls where the possession of –OH groups was necessary
or the seeds. The authors have taken the advantage of the
eactive groups of the seeds to further crosslink the supra-
alls to improve their stability. Undesired inter-supraball
rosslinking also occurred. Lower surface area values and
omparable pore sizes are obtained in this second study.

 recent paper from another group [83] applied the same
pproach, together with the help of an ink-jet apparatus
nd obtained rather monodisperse and smaller supraballs
ith regular spherical shapes (Fig. 9). The seeds used were

rosslinked in this study.

.4.3. Davankov approach: hypercroslinking the phenyl
ings

Another approach that will be briefly discussed in
his section is called the Davankov approach [93]. This
pproach is based on the formation of extensive post-
rosslinking between the phenyl groups on the PS resin
ia Friedel–Crafts reactions [94]. A bis-halide such as
ichloroethane is needed together with the catalyst FeCl3
o form the bridges between the phenyl groups of pure
S resins [95] and FeCl3 alone is sufficient for post-
rosslinking PS resins containing 4-(chloromethyl)styrene
omonomer [96]. The first stage can be any heterogeneous
olymerization such as emulsion [97], suspension [98] or

recipitation polymerization [99] while the second stage

nvolves the Friedel–Crafts hypercrosslinking where the
eeds are simply swollen in dichloroethane and heated in
he presence of FeCl3. These hypercrosslinked resins are
ymer Science 37 (2012) 365– 405 375

commercially available from various manufacturers [94]
because of their high surface area values reaching up to
2000 m2/g [100], resulting in very different sorption char-
acteristics [101]. In the case of emulsion polymerized seeds
[97], monodisperse beads as small as ∼500 nm with a sur-
face area of 1200 m2/g are successfully prepared, which has
never been achieved via another approach to the best of our
knowledge. Although vinylpyridine-based resins were also
hypercrosslinked [102] and post-modification of hyper-
crosslinked PS resins is possible [103], to our knowledge
this method is only applicable to aromatic resins, PS being
the prime example.

2.4.4. Other multistage heterogeneous polymerization
approaches

This section will be finalized by discussing few other
individual multistage approaches before an overview is
given at the end. The first example is a triple dispersion
polymerization for the preparation of “golf ball-like” par-
ticles. Okubo and co-workers [104,105] first prepared PS
seeds and then enlarged these seeds by sodium styrene sul-
fonate monomer in the second dispersion polymerization
stage. As discussed previously in dispersion polymerization
section, polar monomers may result in polydisperse par-
in  the dimples instead of an interconnected porous network. (A and B)
SEM and (C–F) TEM images of microtomed beads. Images E and F are the
enlargement of white rectangles in images C and D, respectively.
Reproduced from [105] with permission. Copyright 2008 American Chem-
ical Society.
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dodecane resulted in dimples but not interconnected pores
(Fig. 10).

Another triple-stage heterogeneous polymerization
approach to obtain “walnut-like multihollow” particles is
proposed by Ge et al. [106]. The authors first prepared
PS seeds by dispersion polymerization and used these
seeds in a following suspension polymerization stage to
form ∼3 �m monodisperse crosslinked but still nonporous
styrene–DVB particles. After sulfonation, these crosslinked
seeds are swollen by the styrene monomer, again in water
without the addition of any stabilizer, surfactant, initiator
or porogen. A final exposure to �-ray irradiation for poly-
merization resulted in walnut-like multihollow particles.
Such as the previously mentioned “golf balls-like” parti-
cles, these ones also lack a truly porous structure, where
pores are interconnected. However, both structures may
be inspiration points for the development of novel porous
particles with complex structures in the future.

The final example of this section is the “cage-like”
particles that are basically hollow particles possessing
huge pores (Fig. 11), also reported by Ge and co-workers
[107–109]. The Pickering emulsion route was utilized
where emulsions are stabilized by particles instead of sur-

factants [110] similar to the colloisodomes that have been
previously explained. They first prepared polydisperse sul-
fonated PS particles and used these particles to stabilize
an O/W emulsion where the oil phase is either methyl

Fig. 11. SEM (A, B, D and E) and TEM (C and F) images of hollow core, porou
emulsion approach and �-ray polymerization of additional monomer that are sw
poly(vinylacetate).
Adapted from [107] with permission. Copyright 2005 American Chemical Society
lymer Science 37 (2012) 365– 405

methacrylate (MMA)  or vinyl acetate. A stable emulsion
is formed after stirring owing to the sulfonated PS parti-
cles, which covered the surface of the monomer droplets
(Fig. 12). These PS particles were allowed to swell the
monomer phase, which is the reason for the hollow core
formation. Shrinkage of the new polymer phase via �-ray
polymerization resulted in the removal of the seeds. Con-
sequently, the space initially occupied by the seeds, turned
into huge pores of the final porous hollow particles, which
are referred to as cage-like particles by the authors.

It was  our aim to highlight in this section the power
of multistage heterogeneous polymerizations. By a careful
selection and control of the different stages of the poly-
merization, it is possible to achieve polymer particles with
any desired size, monodispersity, porosity, pore size distri-
bution, hollowness and functionality. On the other hand,
moving away from the spherical shape still does not seem
to be achievable. Fig. 13 provides an overview of the mul-
tistage approaches discussed above. We believe that there
are still opportunities for further developments, especially
in the second stage.

2.5. Membrane/microchannel emulsification: controlling

the droplet formation

It was  discussed in the previous section that seeded sus-
pension polymerization leads to monodisperse particles

s shell (“cage-like”) particles prepared by a combination of Pickering
elling these seeds (see Fig. 12 for the mechanism). (A–C) PMMA, (D–F)

.



M.T. Gokmen, F.E. Du Prez / Progress in Polymer Science 37 (2012) 365– 405 377

n of “ca
A  Society

p
t
p
i
i
p
f

s
w
p
s
g
v
c
[
n
d
c
b
m
d
fi
w
n
m
w
r
t
s
g
r

Fig. 12. Mechanism of the formatio
dapted from [107] with permission. Copyright 2005 American Chemical

rovided that the seeds are monodisperse. Thus, it is clear
hat the control of the final size dispersity in a suspension
olymerization is merely connected to controlling the

nitial droplet size distribution. As a matter of fact, the
nvention of the Shirasu porous glass (SPG) with uniform
ore sizes, leading to uniform emulsions, paved the way
or controlled suspension polymerizations [111].

The name membrane emulsification is appropriate for
uch a technique and low CV (around 10%) porous beads
ith diameters ranging from 1 to 100 �m can be easily
repared in a single stage avoiding seed preparation and
welling steps. However, particles prepared via SPG are
enerally not monodisperse since the CV of the SPG pores
aries between 10 and 17% (Fig. 14(B)) [112]. Later, other
eramic membranes have also been invented next to SPG
113,114]. Moreover, researchers developed microchan-
el emulsification for which every hole (channel) for
iscrete phase droplet formation is custom made. Sili-
on [115–118], metal [119,120] and polymer [121,122]
ased highly uniform microchannels have been used for
onodisperse (CV < 5%) particle manufacture [123]. The

ifference between membrane and microchannel emulsi-
cation is the fabrication of the emulsification material,
hich in turn affects the pore size distribution. Microchan-
els (Fig. 14(C)) are manmade uniform holes on a suitable
aterial while a membrane (Fig. 14(B)) is a material
here the production method is controlled in a way to

educe the polydispersity of the pores. In this review, the

wo techniques have been combined in the same section
ince they are basically the same. However, we kept the
iven names to indicate the difference, especially with
egard to monodispersity and cost. Microchannels offer
ge-like” particles shown in Fig. 11.
.

highly monodisperse particles but need to be custom-
made, which can be expensive and may  require a lot of
experience.

Particle production using membrane/microchannel
emulsification is depicted in Fig. 14(A). A discrete monomer
phase is pumped through the membrane towards the con-
tinuous phase to form uniform droplets to be polymerized.
A representative case from a published report is as follows:
The discrete phase consisted of GMA, DVB, benzoyl perox-
ide and a mixture of solvating and non-solvating porogens
while the continuous phase was  an aqueous solution of
NaNO2 and emulsion stabilizers [125]. This recipe can be
transferred exactly to a basic suspension polymerization
reactor to obtain porous particles. A propeller helps the
monomer droplets to pinch off from the membrane surface.
However, in literature many reactor designs are proposed
that do not necessitate the usage of a propeller or a stir-
ring bar [120]. Although thermal initiation is utilized in
this report [125], photopolymerization is mostly applied
[126] in continuous flow membrane/microchannel emul-
sification reactors.

Most of the membranes and microchannels are
hydrophilic such as SPG [123]. The nature (hydrophilic
or hydrophobic) of the membrane/microchannel is quite
important with regard to the quality of the emulsions
in terms of their size dispersity. Emulsions prepared by
SPG (hydrophilic) from styrenic monomers (hydropho-
bic) are more uniform compared to the ones prepared

from more hydrophilic monomers such as acrylates, which
will wet  the membrane. This drawback has been over-
come by an approach [127,128] that is very similar
to Ugelstad’s seed swelling method [67] discussed in
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Fig. 13. Overview of multistage approaches with the monomer styrene as an example. In the first stage (yellow background), monodisperse submicron seeds
ion poly
ombina
d, the re
are  prepared. The second stage (blue background) can be either suspens
supraballs, or hypercrosslinking to obtain very high surface areas or a c
particles. (For interpretation of the references to color in this figure legen

the previous section. Since the obtained emulsions from
methacrylate monomers (hydrophilic) were not suffi-
ciently monodisperse by using SPG (hydrophilic) alone,
hydrophobic monodisperse seed droplets were prepared
by SPG first [127]. In this report by Ma  and co-workers,
uniform SPG emulsified seed droplets were composed of
toluene, EGDMA, hexadecane and benzoyl peroxide while
the non-uniform emulsion (prepared by ultrasonic emul-
sification) was a mixture of 2-hydroxyethyl methacrylate
(HEMA), EGDMA and hexanol (Fig. 15). Via the continuous
water phase, these super-hydrophobic droplets absorbed
hydrophilic methacrylate monomers (HEMA and porogen
hexanol) in the swelling step. Finally, thermal treatment
allowed them to obtain rather monodisperse poly(HEMA)
beads with varying porous nature.

A report from Gong and co-workers [129] further
demonstrated the importance of the hydrophobicity of
the monomer phase by studying the effect of the poro-
gen nature. In a study with 6 different porogens, it has
been shown that the CV of DVB emulsions can be reduced
from 23.7 to 8.8% when tetrahydrofuran (THF) and hep-
tane were used respectively. It has also been shown in the

same report that the total pore volumes can be doubled
and specific surface areas can be significantly increased
(from 481 to 987 m2/g) by hypercrosslinking the obtained
beads via the Davankov approach, which was discussed
merization to obtain larger and porous particles, or assembly to obtain
tion of assembly and polymerization (Ge approach) to obtain cage-like
ader is referred to the web version of the article.)

earlier. In another paper by Ma  and co-workers [130] the
use of porogens such as heptane, paraffin oil, hexade-
cane and lauryl alcohol for DVB was  reported: from these
solvents, not only porous but also hollow particles were
obtained.

2.6. Microfluidics: the ultimate control

An ultimate control of droplet formation is achieved
by the youngest particle production technique, called
microfluidics. This technique can be considered as
the miniaturized version of microchannel emulsification
where flow plays a crucial role. Monomer droplets of uni-
form size are pinched off from an orifice that is generally
located in the middle of a flowing continuous phase (see
Fig. 16).  Spherical particles with CV below 2% can readily be
produced by various microfluidic setups [131–135]. It is the
elaborate chip design that allowed researchers not only to
miniaturize microchannel emulsification reactors and pre-
pare narrowly monodisperse spherical beads but also to
achieve unprecedented control over structure and shape
of particles. This unique capability of control resulted in

the realization of perfectly controlled multiple emulsions
[136–145], Janus particles [146–156], regular nonspherical
shapes [157–166] and even gas bubbles [167–171], almost
all of which were impossible to achieve before.
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Fig. 14. (A) Representation of membrane/microchannel emulsification process [124]. The monomer phase (discontinuous phase) is pumped from the
bottom  through a microchannel network or a membrane towards the continuous phase. An agitator helps the droplets to pinch off. These monodisperse
droplets are then polymerized to obtain particles. (B) SEM image of a SPG membrane with a mean pore size of 15 �m [112], (C) circular pore microchannel
network [124].
Adapted from [112,124] with permission. Copyright 2007 Elsevier; Copyright 2009 Elsevier.

Fig. 15. Seed emulsion swelling method proposed to prepare monodisperse beads containing HEMA monomer.
Reproduced from [127] with permission. Copyright 2008 American Chemical Society.
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Fig. 16. T-junction, co-flow and flow-focusing geometries for PDMS and glass capillary microfluidic devices for comparison. The lighter liquid is the
oth pha

ight 200
monomer phase while the darker one is the continuous (cont.) phase. B
arrows  point the direction of total flow and droplets.
Capillary device graphics are adapted from [178] with permission. Copyr

2.6.1. Types of microfluidic devices
It was the introduction of a soft lithography technique

for the design of PDMS devices by Whitesides in the late
1990s [172,173] that popularized the studying behavior of
fluids at laminar flow in fine channel dimensions, which is
referred to as microfluidics today. Since then, PDMS based
chips became the most popular devices, also for microflu-
idic particle production. This technique is basically based
on consecutive steps of molding, casting and curing steps,
which is out of the scope of this review. Soft lithography
allows an easy way to manufacture an unlimited number of
2D device designs including T-junction [174], co-flow [153]
and flow-focusing [110,175] geometries (Fig. 16). Multiple
emulsification points [137,140] to obtain multiple emul-
sions can also be easily fabricated. However, PDMS is not
compatible with several organic solvents, mainly due to
swelling [176]. The most important alternative to PDMS
based microfluidic devices is the assembled glass capillar-
ies introduced by Weitz and co-workers [143,177,178].  In
this approach, chemical and solvent resistant glass cap-
illary tubes are fitted in each other to form truly 3D
microfluidic geometries including co-flow [179] and flow-
focusing [180] (Fig. 16). Droplets, hence particles, smaller
than the orifice can be fabricated in a flow-focusing glass
capillary device compared to a flow-focusing PDMS device
(Fig. 16). However, Weitz-type glass capillary device prepa-
ration can be tedious and requires expertise. Recently,
Weitz and co-workers proposed a route to coat inner walls
of PDMS devices with glass [181,182],  thereby merging the

easiness of soft lithography with the inertness of glass.
Other studies exist in which pure glass [183] or organic
polymers [184–186] are used instead of PDMS for the chip
manufacture.
ses are pumped at constant rates by the use of syringe pumps. Largest

7 Materials Research Society.

In connection to these two  mainstream microfluidic
devices, a few other setups are also drawing the attention.
The first one is the so called ‘simple’ microfluidic device
[187,188] where the microchannel is as simple as a com-
mercial transparent polymer tubing and the discrete phase
orifice is a blunt needle punched into this tubing. Syringes,
syringe pumps and a UV source are also needed like in the
case of PDMS and glass capillary setups. In this device, chip
preparation is avoided and even highly monodisperse dou-
ble emulsions [189] can be prepared together with particles
[190]. Later, Du Prez and co-workers reported [191] that
the bending of the discrete phase needle transformed the
device from a T-junction to a co-flow geometry (Fig. 17(A))
and more reproducible results are obtained for a viscous
aqueous phase emulsified into an oil phase. This simple
device can perform as good as the PDMS and capillary based
setups as soon as the blunt needle is well placed in the
middle of the tubing. For this simplified setup, two main
drawbacks are present. First, commercially available tub-
ing is generally hydrophobic, which can be problematic
in terms of wettability (see upcoming section for details)
in case that mainstream hydrophobic monomers are used.
Second, the smallest needle available has an internal diam-
eter of 110 �m (32G). The smallest porous beads that we
were able to prepare with such needle in the aforemen-
tioned simple microfluidic system were about 150 �m in
diameter, which seems to be the limit for such device. Nev-
ertheless, such simple setup is very attractive and nearly
costless for researchers wishing to step into this research

field.

Another co-flow device, similar to this simple setup,
was  reported by Serra and co-workers [192,193] utilizing
a steel tee to fix the discrete phase needle (Fig. 17(B)). This
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Fig. 17. (A) Tubing-needle based microfluidic co-flow device [9].  Note the bent needle in the droplet formation inset of the schematic drawing. Droplets
are  pinched off from the tip of the needle by the carrier continuous phase flow and photochemically polymerized downstream the tubing. (B) The latter
d ed by us
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eveloped tubing-needle/capillary device. The needle or capillary are fix
his  way  due to the usage of capillaries.
dapted from [9,192] with permission. Copyright 2009 American Chemic

esign was important as it allowed further development
y using capillaries instead of the discrete phase needle
157,160,194,195]. Theoretically, monodisperse particles
ith few micrometers in diameter should be possible to

chieve via this type of devices since down to 2 �m inter-
al diameter capillaries are commercially available. Few
ther types of devices are also reported in the literature
196–198].

.6.2. Droplet formation in microfluidic channels
The core of microfluidics is the droplet formation. To

his extent, the dripping–jetting transition is of great
mportance for low CV particle production and satellite
ormation. The droplet formation mechanism in microflu-
dic emulsification will be discussed on a co-flow device
Fig. 16),  which is the mostly utilized geometry in microflu-
dics. Dripping–jetting transition is generally explained
y dimensionless numbers such as capillary, Weber and
eynolds numbers, for which we refer to other literature
179,199–201]. In this review however, we would like to
xplain dripping–jetting transition by using parameters
hat are familiar to chemists, such as flow rates, polarity
ifferences, viscosity, wettability and channel dimensions.

n a co-flow microfluidic device (Fig. 16),  the orifice of
he dispersed phase is located in the middle of the sur-
ounding continuous phase and the flow directions of
ither liquid phase are the same. As mentioned earlier, the
ontinuous phase flows around the dispersed phase and
rovides the droplet breakup from the dispersed phase ori-
ce. Droplet breakup can take place either in the dripping
egime (Fig. 18,  upper image) or jetting regime (Fig. 18,
ottom image). The latter is characterized by the inner liq-
id forming a long thread before breaking up into droplets.

he dripping regime is desired for the formation of low
V spherical particles. However, the production of low CV
143] and smaller particles (compared to particles prepared
n the dripping regime) is reported in the jetting regime
ing a commercially available tee [192]. Smaller particles are obtained in

ty; Copyright 2008 Elsevier.

and once the jet is stabilized [202], uniform fibers [158]
and tubes [166] can be obtained.

In co-flow (Fig. 18)  both the inner and the outer
liquids are pressurized with constant flow rates, gener-
ally by the aid of syringe pumps. It is the immiscibility
between the two liquids, hence the interfacial tension,
that allows the discrete phase droplet to grow at the
tip of the orifice. More inner liquid fills the droplet in
the first stage, resulting in the growth of the droplet.
Thus the growing droplet occupies more and more space
from the available microchannel, hence the pressure of
the surrounding outer liquid increases. By the time that
a critical size for the droplet is reached, the pressure of
the outer liquid overcomes the interfacial tension and
forces the droplet to pinch off from the orifice, which
is the second and the last stage of droplet formation in
microfluidics.

Flow rates are important in terms of the
dripping–jetting transition. Indeed, when the flow rate of
the outer liquid is too high (which means high pressure),
it suppresses the proper droplet growth, so that the first
stage is blocked. On the other hand, for too high flow rates
of the inner liquid, this liquid adds more and more discrete
phase into the forming jet and thus does not let the outer
liquid to narrow the thread, resulting in the blockage of
the second stage of the droplet formation. Consequently,
there is a safe zone, the dripping regime, where both flow
rates are low. Fischer and co-workers [199] showed this
trend by plotting a graph (Fig. 18)  showing the relationship
between two flow rates and discussed about a ‘critical
jetting velocity’ for the continuous phase where the jetting
regime is reached above this velocity. It is important to
note that the authors mentioned that this critical jetting
velocity may  slightly vary depending on the starting

regime, which was also experienced by ourselves.

As mentioned above, it is crucial to work in the dripping
regime to form droplets with CV below 2%. However, low
flow rates have certain issues that cannot be neglected. First
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es in a c
Fig. 18. Real time images of dripping (above) and jetting (below) regim
Droplet break-up is often irregular in the jetting regime.
Adapted from [199] with permission. Copyright 2004 Elsevier.

of all, a low flow rate for the discrete phase logically means
a lower droplet production rate, hence a lower particle pro-
duction rate, which is the main drawback of microfluidics.
On the other hand, an increase in the discrete phase flow
rate will generally increase the size of the final particles,
which may  not be desired for the application. The contin-
uous phase flow rate can be increased (without exceeding
the critical jetting velocity) to keep the particle size lower,
without decreasing the discrete phase flow rate. However,
an increase in the continuous phase flow rate would result
in a higher consumption of continuous phase liquid, and
more importantly in a higher ratio of continuous phase
over discrete phase droplets. This dilution is certainly prob-
lematic when more hydrophilic monomers are emulsified
in water. This has been experienced in our research group

with the observation of high losses of GMA  into the contin-
uous water phase. By taking these facts into consideration,
the dripping–jetting transition figure from reference [199]
was divided into 3 imaginary parts for this review (Fig. 19):

Fig. 19. Critical jetting velocity of the continuous phase as a function of the rate
The  plot is divided into 3 imaginary sections for this review. Optimum conditions
Adapted from [199] with permission. Copyright 2004 Elsevier.
o-flow device [199]. The long thread of the inner phase is called the jet.

large droplets, optimum conditions and excess continuous
phase.

Next to the flow rates, another important factor effect-
ing dripping–jetting transition is the polarity of both
phases. For an O/W emulsion, the effect of polarity can be
very prominent for porous particles. Since it is the inter-
facial tension, hence the polarity difference between two
phases, that allows droplet growth at the tip of the inner
liquid orifice, an increase in polarity of the monomer phase
will lead to smaller droplets and a smaller value of crit-
ical jetting velocity (undesired). We have often observed
that addition of non-solvating porogens, such as long-
chain alcohols, to methacrylates significantly decreases the
droplet size due to an increase in polarity. In other words,
polar porogens narrow the polarity gap between the two

phases, resulting in a drop of the critical jetting velocity.
On the other hand, addition of a hydrophobic porogen such
as hexadecane should increase the droplet size if desired.
Finally, addition of salts to the continuous phase increases

 of discrete phase for an O/W emulsion in a co-flow microfluidic device.
 are reached when both of the flow rates are low.
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ts ionic strength and thereby increases the polarity dif-
erence between the two  phases, which then increases the
roplet size and critical jetting velocity, i.e. salt-out effect
203].

The last ‘internal’ factor affecting dripping–jetting tran-
ition discussed here will be the viscosity before switching
o ‘external’ factors arising from the device itself. A highly
iscous inner liquid would prefer jetting instead of drip-
ing [199,202] due to the viscous attraction of inner liquid
olecules, thus suppressing the breakup. This behavior

an also be explained by the stabilization of the interface
etween the two phases.

As an example, stable jet pieces were formed by us
nstead of droplets due to the high viscosity of a dis-
rete HIPE phase, when pressurized into the continuous
arrier water phase [9].  The only solution to achieve spher-
cal droplets in our case was found to be decreasing the
iscosity of the HIPE phase. Some reports emphasized
he effect of continuous phase viscosity on droplet for-

ation [204], but others also figured out that it does
ot have a significant effect [205]. Viscosity is found to
e playing a role [206] in the formation of undesired
atellites too, which can be defined as the formation of
uch smaller droplets accompanying the larger monodis-

erse droplets [151,153,155,207–209].  Kumacheva and
o-workers reported for O/W emulsions that there are
arger and narrower safe ranges (no satellite formation) of
ow rate ratios for different viscosity values of oils emul-
ified [206]. It is also important to mention that the jetting
egime is one of the main reasons of satellite formation
210]. However, a high viscosity of the jet can suppress
atellite formation [211], again due to the viscous attrac-
ion.

When considering the effect of the microfluidic device
n droplet formation, two main factors will be encoun-
ered: channel dimensions and wettability. As in the case
f membrane/microchannel emulsification, the continu-
us phase should preferably wet the channel walls for a
roper droplet breakup. In the case of opposite wettabil-

ty, the monomer phase may  form a flowing thin layer on
he channel walls and let the continuous phase flow in the

iddle. Since most monomers of interest are hydrophobic,
/W systems are considered and hydrophilic channels are
eeded.

Two mainstream microfluidic devices differ on such
ssue. While Weitz-type glass capillary based devices are
nherently hydrophilic, Whitesides-type PDMS devices are
ydrophobic and generally treated prior to use [212], with

 plasma [213] for instance, to change its wettability. In the
ase of W/O  emulsions, the glass capillary device needs to
e adapted which can be easily done via chemical treat-
ent by silanes [214]. In terms of channel dimensions, the

ule of thumb is ‘the smaller the better’, provided that the
ettability is adjusted. Less amount of continuous phase
ill be needed for the same flow rate if the channel is nar-

ower, which is important for monomer transfer and cost
ssues as discussed earlier. Wettability will be more promi-

ent when miniaturizing the channel since the inner liquid
roplets will become closer to the channel walls.

A last issue to be discussed in this sub-section is
he effect of the initiation on porosity. Although few
ymer Science 37 (2012) 365– 405 383

exceptions exist [153], microfluidic particle synthesis is
almost completely based on fast UV curing, whereas the
other manufacturing techniques mostly employ thermal
initiation. Thermal initiation is much slower in terms of
monomer conversion. Temperature also has an effect on
the porosity [215], i.e. due to the change in solvating power
of the porogen. Polymerization in UV initiated droplets is
so fast that the phase separation process should be dif-
ferent compared to a thermally initiated polymerization.
Moreover, although the temperature locally increases in
a UV initiated droplet due to the exothermic polymeriza-
tion [216], this temperature should not reach 60–70 ◦C,
which is typically the temperature used in suspension
polymerization. This should theoretically influence the
porous nature of the final particles since all the theory of
porosity is mainly based on phase separation and solvating
power of the porogen. To the best of our knowledge, the
comparison between thermal and photo initiation in terms
of porosity for a given system was not reported yet.

2.6.3. Examples of microfluidic particle production
To start with the examples of porous particle produc-

tion in microfluidics, we should state that the discussion
on suspension polymerization in Section 2.2 is the starting
point to understand the pore formation in microfluidics.
The reader will find out that most of the approaches
mentioned in that section can be easily adopted to
microfluidics since the latter can be considered as an
advanced version of suspension polymerization. Moreover,
microfluidics enables the formation of not only monodis-
perse particles but also of regular nonspherical porous
particles, which is virtually impossible to achieve by sus-
pension polymerization. Few approaches that are still not
applied in a microfluidic channel will probably be exploited
soon.

To the best of our knowledge, the first porous poly-
mer  particles synthesized via microfluidics appeared in
literature in 2005 [217]. By using a PDMS based flow-
focusing device, Whitesides and co-workers prepared
porous particles of ∼250 �m in diameter with a mean
pore size of 0.90 �m.  They photopolymerized tripropy-
leneglycol diacrylate mixed with 20% dioctyl phathalate
(non-solvating porogen) in which the continuous carrier
phase was 2% SDS in water. There were no further data
about the surface area of the particles. Later, Kumacheva
and co-workers studied the effect of 4 different phtha-
lates as porogens for an EGDMA–GMA monomer mixture
[218]. In the order from a solvating to a non-solvating
phthalate, the pore size increased and the specific sur-
face area decreased for the final particles (Table 1). CV
values as low as 0.83 and particle diameters as low as
60 �m were reported. The authors also conducted suspen-
sion polymerization for the same mixtures and concluded
that the particles prepared by microfluidics have a finer
porous structure. In a following work, Kumacheva and co-
workers [28] also reported that after scaling up, a skin layer
was observed on a portion of beads when dioctyl phthalate

and diisodecyl phthalate were used as porogens. The solu-
tion proposed was  to change the continuous phase instead
of the discrete phase, which has already been discussed in
the suspension polymerization section of this review.
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Table 1
Comparison of the effect of porogenic phthalates on EGDMA–GMA particles. From left to right, the alkyl chain of the phthalate increases, the solubility
parameter decreases, so that the gap between solubility parameters of polymer and porogen increases. As a result, pores become larger but the total surface
area  decreases. The solubility parameter of the polymer was  calculated to be 24 (MPa)1/2 by the authors.

Surface of the obtained bead

Porogen Diethyl phthalate Diisobutyl phthalate Dioctyl phthalate Diisodecyl phthalate
Solubility parameter (MPa)1/2 20.5 19.0 16.2 14.7
Surface area (m2/g) 28.7 13.9 6.6 3.4

l Society
Adapted from [218] with permission. Copyright 2008 American Chemica

In another study, Kumacheva and co-workers
[216] reported the fabrication of beads with an
acrylate–urethane interpenetrating network structure.
The heat generated from the photopolymerization of the
acrylic crosslinker triggered the formation of a urethane
network. It has been shown that porous beads can be
obtained when a lower amount of urethane precursors is
used, thereby suggesting that the urethane chains act as
a polymeric porogen for the acrylate. Zourob et al. [219]
made use of a solvating porogen to obtain particles with
the highest surface area prepared in a microfluidic reactor.
A specific surface area of 201 m2/g with a mean pore
size of 8.1 nm was realized upon addition of acetonitrile
to the monomer mixture. A polycarbonate based chip
was fabricated and different batches of beads in the size
range from 10 to 120 �m with CV values below 2% were
achieved. In another work [220] the effect of initiator on
morphology of the beads was studied in a capillary device.
While the continuous phase was water, the discrete phase
was a mixture of HEMA and MMA  monomers, as well as a
porogen, 1-octanol. A macroporous morphology was only
obtained when an oil soluble initiator is used. On the other
hand, a water soluble UV initiator resulted in nonporous
but hollow particles. The waterborne radicals started the
polymerization from the periphery towards the core and
1-octanol stayed inside, forming the hollow core for the
final beads.

Very recently, Ravoo and Du Prez et al. also used 1-
octanol as the porogen for preparing EGDMA–GMA beads
via tubing-needle based microfluidics. This porogen was
found to be the most successful porogen among others in
yielding skin-free macroporous particles [221]. More inter-
estingly, these isotropic particles underwent a reactive
“sandwich” microcontact printing procedure, which pro-
duced anisotropic beads with two different faces, referred
to as Janus particles [222]. By using an epoxy-amine reac-
tion, the authors managed to covalently print either two
different fluorophores, or two different biomolecules, or a
fluorophore and a batch of magnetic nanoparticles. In this
approach, monodispersity of the beads was crucial since

sandwich microcontact printing necessitated a bead mono-
layer of uniform height. This type of porous Janus particles
may  have totally different applications [223,224] compared
to the isotropic counterparts.
.

In terms of using water instead of miscible poro-
gens in microfluidics, we did not find a report using
monomer soluble surfactants that capture water droplets
from the continuous carrier phase (see Section 2.2 for
suspension polymerization example). Nevertheless, HIPE
formulations were successfully pressurized in a tubing-
needle microfluidic device and unique structures are
obtained due to the uniformity of W/O/W double emul-
sions. Du Prez and co-workers [9] prepared W/O  HIPE
formulations and emulsified them once more in the second
carrier aqueous phase via the simple microfluidic device
in which the middle oil phase consisted of the monomers
with an added photo initiator. Beads with a diameter of
∼400 �m were prepared (Fig. 20(A)), which are the small-
est monodisperse poly(HIPE) beads reported so far. The
obtained beads possess huge pores, as large as 15 �m
(Fig. 20(C)) reminiscent of the water droplets and a sur-
face area of 16 m2/g suggesting the presence of mesopores.
The authors also prepared a batch of “classical” macrop-
orous beads from the same monomer mixture by using a
cyclohexanol–dodecanol porogen mixture and obtained a
surface area of 49 m2/g. Although exhibiting a three fold
less surface area, poly(HIPE) beads surpassed the perfor-
mance of classical beads in both steps of a “click”–“click”
modification, which demonstrates the importance of huge
pores (see Section 4 for click chemistry).

More strikingly was  the production of poly(HIPE) rods
of the same composition, except for the molar mass of the
surfactant used in the HIPE preparation. A higher molec-
ular weight (MW)  surfactant increased the viscosity and
the inner HIPE phase formed a jet instead of drops in
the microfluidic setup. However, jet breakup was proper
thanks to the bent needle and as a result poly(HIPE) rods
(Fig. 20(D)) were fabricated. This viscosity driven non-
spherical particle production is also unique of its kind since
all the other approaches make use of confined channel
geometries forbidding the formed droplets to relax into a
spherical geometry [217]. It is also worth to mention that
monodisperse poly(HIPE) beads were also obtained before
but with a size of 2 mm by using a technique called sedi-

mentation polymerization [225].

An approach realized exclusively by microfluidics is
using gas bubbles instead of any liquid or solid poro-
gen. Stone and co-workers [226] were able to capture a
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Fig. 20. Uniform poly(HIPE) beads and rods prepared via a tubing-needle microfluidic device. (A) Light microscopy image of beads showing monodispersity,
( a poly(H
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B)  SEM image of a single poly(HIPE) bead, (C) SEM surface close-up of 

oly(HIPE) rods prepared from a more viscous HIPE mixture.
dapted from [9] with permission. Copyright 2009 American Chemical So

ontrolled number of gas bubbles in an aqueous monomer
hase, which was then emulsified in the carrier oil phase,
hus forming G/W/O double emulsions. Upon solidification
f the monomer phase, ∼20 �m sized beads with uniform
pherical cavities were formed. It is worth to mention that
he interior of the obtained beads were in closed-cell foam
tructure (Fig. 21(A)), which designates the absence of
nterconnectivity between the cavities.

Another unique approach made use of a gas form-
ng reactive porogen. Small droplets containing H2O2

olecules were captured in bigger oil phase monomer
roplets flowing in a carrier aqueous phase [227]. UV

xposure not only solidified the oil phase but also
ecomposed H2O2 molecules exhausting gas species, sim-

lar to the blowing agent strategy discussed in Section
.2. A controlled number of voids is reported, however

ig. 21. Gas foamed particles prepared by PDMS chip based microfluidics. The nu
olyacrylamide particles prepared from a G/W/O emulsion. Scale bar represents 20
hiol-ene resin and gas forming H2O2. Scale bars represent 50 �m [227].
dapted from [226,227] with permission. Copyright 2008 Wiley-VCH Verlag Gmb
IPE) bead. Pores are reaching up to 15 �m and all interconnected. (D)

interconnectivity within the porous structure is poor
(Fig. 21(B)) in comparison to the poly(HIPE) structures
(Figs. 4(A) and 20). Nevertheless, we believe that these two
reports should inspire researchers to exploit the usage of
bubble capture or gas forming porogens to obtain very light
polymer particles with well interconnected pore struc-
ture. The combination of a liquid porogen with bubble
capture/formation may  lead to porous particles possessing
ultra large voids connected to each other through smaller
pores in the future. Moreover, selective functionalization
of those pores depending on their size (see Section 4.2)
may  pave the way to novel particles with unique proper-

ties.

It is important to mention that the solidification was  not
only based on vinyl polymerization but also on a commer-
cial photo-curable thiol-ene adhesive in the latter report

mber of internal cavities can be controlled in both cases; (A) hydrophilic
0 �m [226]. (B) Hydrophobic particles made from a mixture of commercial

H & Co. KGaA; Copyright 2009 American Chemical Society.
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[227]. The addition of thiyl radicals to alkene or alkyne
bonds (thiol-ene and thiol-yne reactions, respectively) has
recently gained considerable interest as novel metal-free
‘click’ reactions among polymer scientists [228–230]. We
recently exploited thiol-ene/yne chemistries for producing
functional porous beads via microfluidics [10]. A tetra-
thiol was mixed with a di-yne or a multi-ene and the
final functional groups of the particles were provided by
adding amino, hydroxyl or carboxylic compounds possess-
ing ene, yne or thiol groups. A maximum surface area of
35.6 m2/g was reached. Together with size monodisper-
sity, very uniform inner globules were obtained in one case
where xylene was utilized in a thiol-yne formulation.

As previously mentioned, the fabrication of nonspher-
ical particles is one of the distinctive capabilities of
microfluidics devices. Next to the poly(HIPE) rods [9],
porous Janus fibers [231] are formed from a photocurable
polyurethane resin in a co-flow PDMS chip by making use of
a stabilized jet. The inner jet, composed of the polyurethane
resin, reacted with the continuous aqueous phase, thereby
releasing CO2 and forming pores only on one side of the
fiber. The effect of the water was proven by replacing it
with glycerol, which led to the formation of nonporous
fibers. Another approach was based on gas bubble capture
in a stable aqueous monomer jet to form hydrophilic poly-
mer  threads with ordered, embedded uniform gas bubbles
[232]. Although fibers are out of the scope of this review,
these approaches may  inspire particle synthesis since jets
can break up into particles once the parameters such as
flow rates are adjusted.

Microfluidics has also been utilized to form monodis-
perse supraballs, consisting of an assembly of smaller
particles to form larger aggregates. As early as 2002,
Pine and co-workers [233–235] reported the assembly
of nanoscale spherical polymer beads into monodisperse

(∼5 �m)  supraballs (Fig. 22)  using a co-flow PDMS chip and
a tubing/pipette tip device. Similar results were reported
by Gu and co-workers later on [236]. In both cases, nano-
sized seed particles in aqueous suspension droplets were

Fig. 22. (A) Monodisperse supraballs (spherical colloidal crystals) achieved via
exhibiting its nature.
Adapted from [235] with permission. Copyright 2003 Elsevier.
lymer Science 37 (2012) 365– 405

emulsified in oil and the assembly was realized via the
removal of water. These approaches are actually multistage
heterophase polymerizations in which the second stage is
microfluidics. The first stages, namely seed preparation,
were either dispersion [234] or emulsifier-free emulsion
[235,236] polymerizations.

2.7. Other techniques

In addition to all aforementioned mainstream produc-
tion methods, few other techniques deserve to be included
in this section which were not yet truly exploited for porous
particle production. The first one is called aerosol polymer-
ization [237], which utilizes a gas, for instance air, as the
continuous phase instead of a liquid. The interfacial ten-
sion between monomer droplets and the surrounding gas
also renders the former spherical, such as in the case of
rain droplets. Although this seems to be a very efficient
method, reports are scarce in the open literature [238–241].
For instance, Ray and co-workers [241] described the pho-
topolymerization of a commercial multiacrylate resin via
aerosol polymerization in a recent paper. The resin was
dissolved in EtOH and atomized, also referred as nebulized,
by an aerosol generator. EtOH was quickly removed thanks
to the N2 current and droplets were rapidly cured by UV.
The particle size varied from 14 to 22 �m with CV values
below 1%. All particles were half the size of the orifice diam-
eter due to the removal of EtOH. This kind of atomization
is a very well known technique and is commonly used in
industry in spray drying processes used for drying laundry
detergent for instance. Another paper described the usage
of a simple airbrush for atomization [242].

A similar technique to the aerosol polymerization
is the electrospray method, where a high voltage is
applied between the aerosol generator and the collec-

tion substrate. It is extensively used for the synthesis
of non-crosslinked particles via precipitation of polymers
from their solutions [243–247], and a limited number of
reports describe monomer polymerization [248–250], all

 assembly of uniform nano-seeds in microfluidics; (B) single supraball
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f which being about nonporous particles. Loscertales et al.
248] successfully electrified a coaxial jet composed of
wo immiscible liquids, the outer one being a commer-
ial photo-polymerizable resin. Jet breakup resulted in
onodisperse compound droplets and UV curing gave uni-

orm submicron capsules with a liquid core. Like in the
revious case, addition of a porogen to make porous parti-
les needs to be exploited.

Another technique waiting to be used for porous par-
icle production is called selective withdrawal [251–255].
eported initially by Nagel and co-workers [251], the bot-
om liquid, which is going to be the dispersed phase, is
ithdrawn just from the interface by a tube where the con-

inuous phase liquid is on top (Fig. 23). The formed liquid
one breaks up into regular droplets inside the microchan-
el. The setup looks very similar to microfluidics, however

t does not necessitate any tedious device preparation.
evertheless, few parameters such as viscosity and tube
istance to the lower phase are of importance.

Finally, flow lithography techniques pioneered by
oyle and co-workers [256–259] have drawn attention
s a potential technique for porous particle production.
lthough generally being considered as a microfluidic tech-
ique, there are distinct differences. First of all, there is
o immiscible carrier phase. The monomer mixture flows
s a single homogenous phase in a PDMS channel and
olymerization is done in seconds via UV light masked
ith a template (Fig. 24(A)). Polymerization near the PDMS

hannel is inhibited thanks to the high O2 permeability
f PDMS [260], which avoids clogging of the channel. The
on-polymerized monomer flow basically acts as the car-
ier phase for the polymerized particles. The shapes and
esolution of particles (Fig. 24(B–D)) achieved with flow
ithography techniques [259–266] are certainly unmatched
y any other technique.

.8. Final comparison of heterogeneous polymerizations
or porous particle production

In this section, we aim to give an overview of all the
echniques that can be used for porous particle produc-
ion. We  explained the basics for each individual technique
y giving recipes but tried not to exclude creative reports
hat deviated from the mainstream approaches within each
echnique. We  suggest that one should consider several
oints to decide which technique to use for the manufac-
ure of porous particles. First of all, depending on the type
i.e. size, size-dispersity, pore size) of the particle needed
here should be an initial selection from the techniques.
or instance, if nonspherical porous particles are targeted,
ne will probably be directed to microfluidic approaches.
owever, it does not mean that it is impossible to obtain
onspherical porous particles with other techniques, just
ecause it has not been realized so far. For sure, scientists
ill continue to challenge the limits of techniques in the
ear future.

In Table 2 we compare the mainstream techniques dis-

ussed above. Monodispersity, average particle diameter,
unctionality, extent of porosity, shape and certainly the
ost should be considered all together. For instance, if the
nal application does not require monodisperse particles, Ta
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Fig. 23. Selective withdrawal for particle production. Water on the bottom is the source of the dispersed phase and oil on top is the continuous phase.
Withdrawing from the right distance forms uniform droplets of the bottom phase.
Reproduced from [251] with permission. Copyright 2001 American Association for the Advancement of Science.

Fig. 24. (A) Schematic representation of the flow lithography technique. The device is composed of a single PDMS channel where monomer–photoinitiator
solution flows. Particles are obtained by on-flight fast curing. (B–D) The obtained non-spherical particles by using different UV masks. Each scale bar
represents 10 �m.
Adapted from [260] with permission. Copyright 2006 Nature Publishing Group.
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here may  not be a need for membrane/microchannel
mulsification or microfluidics. If a bimodal pore size
istribution is aimed, using dispersion or precipitation
olymerizations may  be quite challenging for that purpose.
rom the economic viewpoint, suspension polymerization
s probably the most attractive one but is limited for
ertain applications with regard to size and size dispersity.

. Characterization

.1. Size and size dispersity

Perhaps the first ‘label’ to define a batch of spheri-
al particles (also nonporous) will be the size and size
ispersity. Size can be easily measured from microscopy

mages, especially in the case of monodisperse particles.
ieving and sedimentation are the methods still used in
ndustry to fractionate particles and also to determine size
ange. There are several ways to determine a CV value for
oth monodisperse and polydisperse particles. One way

s analyzing microscopy images via various available soft-
ares [218,241],  which will also calculate the average size.

ight scattering [278–280] and electrical sensing zone (also
alled Coulter counter) [45,281,282] are rather sensitive
nstrument-based methods to determine size and size dis-
ribution. Microscopy and image analysis combination can
e considered as the easiest method.

.2. Porosity: surface area, total pore volume and pore
ize distribution

Surface area, total pore volume and pore size distribu-
ion data define the porous nature. These characteristics
an be measured by N2 sorption and Hg intrusion
echniques, which both depend on penetration of the men-
ioned fluids into the pores. N2 sorption is more suitable
or determining micro- and mesopores and gives less data
bout macropores. On the other hand, Hg intrusion is only
ble to provide data about macropores and mesopores but
ot about micropores [18]. This is attributed to the higher
bility of N2 gas to penetrate into smaller pores compared
o Hg [1].  Consequently, these methods are complimentary
o each other and the proper one should be chosen depend-
ng on the type of the particle. The surface area is generally
alculated from N2 sorption isotherms by using the BET
ethod. Commercial instruments measuring N2 sorption

sotherms include the necessary software. The total pore
olume in the dry state is measured by using both methods
ut again the size of the pores should be taken into consid-
ration. It should be noted that both techniques require a
inimum amount of 200–300 mg  of particles, which could

e difficult to collect via some low yielding manufactur-
ng techniques such as microfluidics. Higher amounts of

aterial give more reproducible results. In addition, N2
orption is a nondestructive method while Hg intrusion is
estructive.

Besides N2 sorption and Hg intrusion, other techniques

283] exist for quantifying the pore size distribution such as
hermoporometry, inverse size exclusion chromatography
nd analysis of microscopy imaging [284]. It is impor-
ant to note that inverse size exclusion chromatography
ymer Science 37 (2012) 365– 405 389

is performed intrinsically in a solvent, so that the data
can be considered as swollen state porosity [285]. To our
viewpoint, N2 sorption analysis stands as the most straight-
forward method since it gives quite reliable data for surface
area, total pore volume and pore size distribution unless
the pores are extremely large. We  also would like to note
that there are reports with equations to calculate several
aspects of porosity by using density measurements as the
only variable [286,287].

The effect of the washing solvent, used prior to drying,
on dry state porosity is also important [288]. Indeed, a frac-
tion of the pores can collapse if the particles are dried from
a good solvent. However, these pores ‘reopen’ after drying
from a poor solvent.

3.3. Surface charge

The surface charge of particles becomes important
when the particle size is below 10 �m.  In this range, a
high surface charge will help the formation of more sta-
ble dispersions of particles in a liquid medium. Oppositely,
surface charge is not desired for self-assembly purposes
[289]. Charged particles are generally obtained by using
acid [50] or base [191] monomers, yielding negative or
positive charge, respectively. pH of the medium is also
important: a carboxylic acid particle will not be charged at
low pH. Adding a salt to the medium also suppresses par-
ticle charge [289]. Finally, surface charge can be induced
by adding anionic surfactants to the medium, forming a
charged polymer layer around the particles.

The zeta (�) potential is generally used as the measure
of surface charge. Zeta potential is theoretically defined
as the electric potential between the dispersed phase and
the boundary fluid layer that is permanently attached
to the particle. Particles with a zeta potential higher
than +30 mV  or lower than −30 mV  can be considered
as highly charged [290]. Zeta potential is calculated from
electrophoretic mobility that is measured by several com-
mercial instruments, using methods such as laser Doppler
electrophoresis or electrophoretic light scattering.

3.4. Swelling/solvent uptake

Swelling is one of the important differences between
porous and nonporous resins. Although swelling is crucial
for nonporous resins, it may  not be expected from porous
(especially macroporous) resins. In the case of nonporous
resins, reagents can only reach the inner reactive sites if
they swell reasonably in the solvent used. For that reason,
those resins are fabricated by using very low amount of
crosslinkers, for instance 1% for the Merrifield resin (the
word ‘resin’ is used interchangeably with the word ‘bead’
especially in the field of SPPS). On the other hand, a high
amount of crosslinker is needed for producing a macrop-
orous resin to facilitate the phase separation between the
polymer and porogen during the synthesis, as discussed in
Section 2.2.  High crosslinking densities limit the degree of

swelling of porous resins. However in this case, the pores
also ‘accommodate’ some solvent, a process that is bet-
ter referred to as ‘solvent uptake’. The presence of pores
thereby greatly facilitates the diffusion of both reagents
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and solvents inside the particles, even though they are not
swelling the particles.

The swelling degree (solvent uptake) can be expressed
either in volume or weight expansion [11]. In the former
case, a weighed sample of dried resin is swollen by a solvent
and the excess of the solvent is removed after the equilib-
rium swelling is reached. The swelling degree is the ratio
of the swollen weight over dry weight. In the latter case,
dry beads are packed into a volumetric syringe fitted with
a frit at the tip, then swollen by a solvent and the volume
difference is recorded as the swelling degree.

3.5. Mechanical strength

Perhaps the weakest point of porous, especially macro-
porous resins is the lower mechanical strength compared
to nonporous ones. For this reason, it is not advised to use a
magnetic stir bar when a resin (even nonporous) is treated
with reagents. Exposing particles to magnetic stirring and
checking if particles preserve their shape is even used as
a method to measure mechanical strength [291]. Several
shakers are being used and rotary evaporation is useful
when heating is also needed [12].

Several methods are used to determine mechanical
strength of particles. First of all, there are dedicated instru-
ments measuring several mechanical parameters (tensile
strength, elongation at break, D hardness) of particles
according to ASTM standards [292]. Mercury intrusion
porosimetry curves can also be used. A slope instead of
a plateau for the second zone of the curves indicates low
mechanical strength [13,293]. In addition, combination of
TGA and DSC is also proposed as a method of mechanical
strength measurement [72,73]. These methods are suitable
for particles of any shape, size and size distribution.

Another common way to analyze mechanical strength
of particles with sizes down to 2 �m in diameter is via
compressing a single particle between two plates and mea-
suring the deformation [294–297] by several ways such
as microscopy [298] or weighing [299]. This technique is
more suitable for monodisperse spherical particles since
the measurement is generally performed on a single parti-
cle.

The final way to understand mechanical stability of
particles is utilizing them for the desired application and
observe if any change in morphology takes place due to
the stress generated for this specific application. Parti-
cles prepared for chromatography columns are packed into
columns and back pressure is measured as an indication of
mechanical strength for instance [300].

3.6. Chemical analysis

The chemical nature of the particles is of utmost impor-
tance for some applications where functionalization is
needed. Analytical techniques used to characterize other
materials (i.e. nonporous particles, bulk polymer materials

and inorganic particles) are to some extent applicable to
porous particles. Most suitable techniques for the analy-
sis of porous particles are elemental analysis, IR and color
based essays, which are briefly described herein.
lymer Science 37 (2012) 365– 405

Elemental analysis can provide information about func-
tional groups that carry atoms different from the backbone.
For instance, halogen, azide and thiol groups will be nicely
detected for a C, H, O based particle but not C–C triple bonds.
If the function to be monitored possesses elements that are
also present in the backbone, derivatization can be a solu-
tion. –NH2 groups on a N based resin is such an example.
Elemental analysis will give the total amount of N present
in the resin. If free –NH2 groups are completely capped (for
instance) with a –Cl containing isocyanate, the amount of
Cl atoms in the final resin will give the desired information
about the accessible –NH2 groups of the initial batch. It is
worth to be mentioned that the sample should obviously
be totally free of any residual reagents or solvents.

Infrared (IR) analysis is probably the most facile instru-
ment based method to detect functional groups (such as
–OH, –NH2, C O, C C, C C, –SH and –N3) and moni-
tor the evolution of reactions on particles [9,218,301]. IR
spectrometers are abundant and analysis time is short. In
addition, the decrease of a reagent due to the reaction with
the present particles in a well sealed flask can also be fol-
lowed by real-time IR measurement. As a complementary
method to IR, Raman spectroscopy can reveal other func-
tional groups (such as C–Cl and C N) that can be difficult to
detect by IR [302,303].  Moreover, solid state [304,305],  gel
phase [306,307] and high-resolution magic angle spinning
(HRMAS) NMR  [308–311] techniques can be quite success-
fully applied to detect the functional groups and monitor
reactions on particles. Availability of probes, operator expe-
rience and need of a suitable solvent for the analysis can be
the parameters to tackle.

Real time monitoring of reactions taking place on parti-
cles can be realized by several spectroscopy methods [312].
NMR, IR, UV–vis and fluorescence spectroscopy techniques
will give qualitative data on reaction kinetics in this way.
Once the flask is well isolated, decrease of a reagent due to
the reaction with the present particles will enable online
monitoring. However, one should be careful not to con-
clude that all the functional groups on the polymer are
consumed when the consumption of the followed reagent
is stopped. Mostly there are inaccessible functionalities on
the polymer, which will give a positive signal when ana-
lyzed. This is generally troublesome since it is very difficult
to quantify remaining functional groups.

It was the fact that reliable quantification of remaining
functional groups on particles is rather difficult, stimulated
solid phase peptide synthesizers to develop highly efficient
coupling strategies [313]. These strategies will be further
discussed in the next section. In solid phase synthesis, color
tests [314–320] are the equivalence of thin layer chro-
matography for solution phase organic synthesis. Once a
resin undergoes a chemical transformation with a reagent,
a small portion of the resin is treated with a dye that is
highly reactive for the chemical function that has to be con-
sumed in the actual reaction. Lack of coloring of the resin
judged by the naked eye designates the completeness of the
main reaction. In the classical fluorenylmethyloxycarbonyl

(Fmoc) based solid phase peptide synthesis (Scheme 1), a
resin possessing –NH2 or –OH groups is treated with an
Fmoc protected amino acid in the presence of some well
known organic catalysts [321]. Here the completeness of
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cycloaddition (CuAAC) [328–332] and the addition of a thiyl
radical to olefins (thiol-ene and thiol-yne) [230,333,334]
(Scheme 2). There is a huge number of publications
Scheme 1. Solid phase amino acid couplin

he reaction is checked with a color test, i.e. ninhydrin. If the
midation/esterification is complete, the Fmoc group can
e released by piperidine and quantitatively detected by a
ell established UV measurement [322]. This in turn will

ive reliable data for initial –NH2/–OH loading (amount of a
unctional group on a resin generally expressed as mmol/g)
f the resin. Finally, titration [323,324] can also be used for
uantitative analysis.

. Functionalization

.1. General particle functionalization

This section will briefly discuss the strategies employed
or particle functionalization. As in the case of charac-
erization, strategies used for monoliths, nonporous gels,
urfaces and so on can be applied to porous particles in
any cases. Consequently, references given here will not

trictly include porous particles. It should be known before-
and that reactions on solid phase are much slower and
ields are generally lower in comparison to homogeneous
eactions. In addition, quantitative detection of unreacted
emaining groups may  not be straightforward as already
entioned in the previous section. Moreover, in some cases

t is not possible to use excess of an expensive reagent to
rive the reaction to completion. These constraints neces-
itate the use of high yielding reactions on solid phase.
Click chemistry” [325] is the term coined almost a decade

go to describe reactions basically running with high yields
n mild conditions and without any offensive by-products.
hus, click type reactions should be well appreciated for
unctionalization of particles. For this reason, this section
oc test for chemical analysis of particles.

will mainly discuss click type reactions. It is important
to mention that by-products or excess of the reagents
generally do not constitute a problem for solid phase func-
tionalization since purification is done by some washing
steps.

From the several proposed click type reactions in the
literature [326,327],  two  of them received much attention
within the polymer society: Cu(I) catalyzed azide–alkyne
Scheme 2. CuAAC and thiol-ene/yne click chemistries.



ss in Po
392 M.T. Gokmen, F.E. Du Prez / Progre

utilizing CuAAC since the first report in 2002 and thio-click
reactions are recently becoming very popular. Obviously,
one of the reactive groups should be present on the solid
support and the complementary one(s) in solution for
these click reactions to take place. The presence of azide or
thiol on the support and not in the solution should be con-
sidered for practical reasons. Low MW azide compounds
can be seriously explosive [325,335] while low MW thiol
compounds generally have a deterring smell. Moreover,
there are color tests to detect remaining amounts of both
azide [320] and thiol [314] groups. As mentioned in the
previous section, azide, alkyne, alkene and thiol groups
can be easily followed by IR spectroscopy which makes
these reactions further attractive on solid phase.

4.1.1. Cu(I) catalyzed azide–alkyne cycloaddition
(CuAAC)

Although there are numerous studies on CuAAC
functionalization of nonporous polymers [280,298,328,
336–351], silica [352–354] and metal particles [355],
the amount of publications on porous polymer parti-
cles is limited. Finn and co-workers [356] described the
click functionalization of a commercial porous agarose
resin for affinity chromatography. In two parallel experi-
ments, amino agarose beads were treated with azide and
alkyne carrying activated esters respectively (Scheme 3).
The interesting point of the approach was  that the
azide/alkyne carrying ester released the UV active p-
nitrophenol group upon amidation, thus the azide/alkyne
loading could be determined by online spectroscopic
techniques in a similar way to the Fmoc test. Several com-
pounds of interest were subsequently clicked on these
agarose beads and the coupling efficiency was shown
by clicking a fluorophore. More studies about clicking
onto commercial agarose beads are reported [357,358] but
information about the nature (porous or not) of the beads is
missing.

The preparation of custom made porous azide and
alkyne beads for chromatographic applications was later
published by Frechet and co-workers [12] utilizing a
multistage seed swelling approach. Alkyne bearing beads
were prepared in a straightforward fashion by using an
alkyne monomer for the second swelling stage. For the
azide bearing beads however, an epoxy monomer was
used for the second swelling stage and azide introduction

was realized in another step. Although the authors do
not mention the reason for the need of another step
instead of utilizing an azide monomer for swelling, we
believe that it is due to the loss of azide groups during the

Scheme 3. Monitoring the agarose functionalizat
Reproduced from [356] with permission. Copyright 2005 American Chemical Soc
lymer Science 37 (2012) 365– 405

polymerization of double bonds as recently reported by
Perrier and co-workers [359]. We  also experienced that
azide groups are not only sensitive to temperature but
also to UV. The UV triggered self crosslinking ability of
azide groups is even used as a strategy to obtain networks
[360]. Nevertheless, Chan and co-workers [339] recently
reported a one-pot preparation of azide carrying nano-
beads by a delayed addition of azide monomer into their
inverse microemulsion polymerization batch.

Another strategy to introduce azide groups on a porous
resin was published by Oyelere et al. [361], i.e. NH2 groups
on commercial Argopore resin have been converted to
azides via diazo-transfer reaction by using triflyl azide
and further clicked with nucleosides. Despite the handling
difficulties of triflyl azide (explosive, needs to be freshly
prepared each time), this method should be widely appli-
cable since there are numerous amino resins available on
the market. Finally, Du Prez and co-workers [9] compared
the clicking of phenyl acetylene onto self-prepared macro-
porous and megaporous (micron sized pores) poly(HIPE)
particles composed of the same monomers. The effect of
the pore size was  shown to be more important than the
surface area, which was proven by a better performance of
the poly(HIPE) beads.

4.1.2. Thio-click modifications
A combination of thiol-ene and CuAAC click reactions on

nonporous polyDVB particles was published by Müller and
co-workers [52]. Remaining double bonds of precipitation
polymerized polyDVB particles first underwent thiol-ene
click by treatment with 1-azidoundecan-11-thiol. In a
second step, the azide functions have been treated with
an alkyne terminated linear polymer. The same strategy
was  applied to metal doped nanoparticles by Hawker
and co-workers [362]. The efficiency of the thio-click
reaction was  shown by the change in dispersing ability
of the particles in THF after grafting thiol terminated
PEG chains. Addition of thiol groups onto (meth)acrylate
[363,364] or epoxy groups [365] of porous and nonporous
particles has also been published. Our group also recently
contributed to this field by preparing both thiol- and
yne-functionalized nonporous beads by changing the
ratio between the two building blocks: a tetra-thiol and a
di-yne [366]. The yne bead was separately treated with a
thiol and an azide for comparison and it was  found that

thiol-yne is faster than CuAAC for specific conditions.
Moreover, the thiol bead was treated with 9 different
click reagents in parallel and the ranking is found as
follows based on fastest conjugation kinetics: isocyanate >

ion by the released p-nitrophenol group.
iety.
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orbornene > acrylate ≈ isothiocyanate > maleimide ≈ iso-
ated ene > �-bromo ester > epoxide ≈ aziridine. Finally,
nother novel highly efficient functionalization reaction
nvolving the catalysis and heat free grafting of PS chains
nto precipitation polymerized porous DVB particles via
etero-Diels-Alder chemistry was developed by Barner-
owollik and co-workers [367]. The microspheres were

unctionalized with cyclopentadiene and PS chains were
urnished with thiocarbonyl moiety as dienophile. Very
igh PS couplings were reported for time scales as short as

 h without heat treatment.

.1.3. Coupling strategies of solid phase peptide synthesis
Strategies developed over decades for solid phase pep-

ide synthesis [368] and solid phase organic synthesis [369]
re generally very efficient. Coupling of an amino acid on a
esin carrying –NH2 groups (Scheme 1) can be completed
n less than 1 h at room temperature [370] thanks to var-
ous efficient catalysts [371] developed over decades. This
hemistry is certainly as efficient as any well accepted click
eaction. In addition to amidation, several highly efficient
sterification strategies are also well established [372].
arious other peptide ligation strategies such as native
hemical ligation [373] and Staudinger ligation [374] are
ell described in literature [375] but are kept out of the

cope of this review.

.1.4. Epoxy group as an electrophile on particles
Finally, we conclude this functionalization section by

entioning further possibilities offered with epoxy car-
ier resins. The potential of spring loaded epoxy ring for
ffective transformations constitutes an important part in
he review of Sharpless and co-workers [325] where ‘click
hemistry’ was first defined. Opening the three-membered
ing with an azide anion (acid catalyzed) or a thiol (base
atalyzed) is already mentioned in this review. Amines
preferably primary) can also open the ring (Scheme 4)

ithout the need of any catalyst or heat. Consequently

poxy groups are good starting points for several modifica-
ions. Moreover, the most commonly used epoxy carrying
inyl monomer GMA  is stable in (neutral) water based

cheme 4. Some of the effective modifications of epoxy particles. Only
he attack to the less hindered carbon atom is considered.
ymer Science 37 (2012) 365– 405 393

emulsions. It should be noted however that opening of the
epoxy ring with a nucleophile results in secondary –OH
groups, which may  interfere with some chemistries.

4.2. Surface- and pore-size-specific functionalization

Site-specific functionalization of particles and their
usage in novel applications will gain more importance in
the near future to our belief since very little work has
been done so far, although the first papers appeared in
early 1990s. Core–shell particles, for which there are well
established preparation strategies [49,376,377], provide
an easy medium for site-specific functionalization since
core and shell are made of different chemical nature. The
difficult task is the site-selective functionalization of a uni-
form particle. To achieve this via wet  methods, diffusion of
the reagents to the core or smaller pores should be pre-
vented. Limited reaction times, polymeric reagents and
hydrophilic–hydrophobic contrast between particle and
reagent/medium may  prevent reagent penetration to the
core or smaller pores.

In this respect, Landry and co-worker first blocked
the pores of mesoporous silica particles with Fmoc pro-
tected silanes [378]. Pore blockage was  proved by N2
sorption measurements. In the next step, a short treat-
ment with a base cleaved only the surface Fmoc groups,
which could be then labeled with a fluorophore. Loca-
tion of the fluorophore was followed by confocal analysis.
Using polymeric reagents for pore-size-specific functional-
ization of macroporous particles is developed by Svec and
Frechet [379–381]. When macroporous, epoxy-containing
beads were treated with poly(styrenesulfonic acid), only
the epoxy groups of the larger pores hydrolyzed, leav-
ing the remaining epoxy groups of the smaller pores to
be functionalized with small amines. Epoxy group titra-
tion showed that the amount of intact epoxy groups
was increasing by the size of hydrolyzing reagent, which
was used as a proof for pore-size-specific functional-
ization. Recently, the same chemistry was applied by
Buchmeiser and co-workers to monoliths [382]. After
poly(styrenesulfonic acid) treatment, pores smaller than
7 nm remained unchanged, half of the ∼80 nm pores were
lost and the number of ∼40 nm pores increased by 150%.
This was followed by inverse size exclusion chromatogra-
phy as a proof of pore-size-specific functionalization. An
interesting extension of this work is the functionalization
of large pores by thermoresponsive polymers that act as
temperature controlled gates [383–385].

About the utilization of the hydrophobic-hydrophilic
contrast, Gooding and co-workers first formed a dense alkyl
layer on mesoporous silica, which prevented water diffu-
sion into the material [386]. Aqueous reagent solutions
functionalized only the surface, followed by an organic
solution that functionalized the pores. Functionalization
was followed by reflectance spectra since the silica was
engineered with a photonic band gap. The authors also
reported that IR is only sensitive to the changes in the bulk

of the material but not to the surface.

In addition, there are directional methods that are being
used to form chemical patches on surface of particles
such as microcontact printing [221,387],  etching [388],
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laser- [389] or UV-induced deposition [390], projection
lithography [391], metal deposition [392,393] and tem-
porary masking one side of particles while modifying the
other [394,395].  Most of these methods are waiting to be
explored for porous particles.

5. Applications

5.1. Ion-exchange, catalysis and scavenging

Ion-exchange has been the first area where porous
resins resulted in commercialization [396]. These resins
possess ionic groups such as –SO3

−, –CO2
− and –NH3

+,
together with a complementary anion or cation such as
H+, Na+, Cl− or OH− [397]. In the classical example, a PS-
sulfonic acid based ion-exchange column can soften water
by exchanging Ca2+ and Mg2+ with Na+. Toxic heavy met-
als can also be removed from water thanks to their high
affinity to polar groups such as carboxylates. Later, it has
been discovered that this metal complexing ability of ion-
exchange resins can be used in heterogeneous catalysis
[398]. Once the resin is loaded with the desired metal, the
organic transformation can be realized either in batch [399]
or in a continuous process. Moreover, H+ carrying cation-
exchange resins can be used for acid catalyzed organic
reactions [400,401].  On the other hand, non-ionic porous
resins are also used in catalysis [402,403].  The catalyst is
either a covalently attached organic molecule [404] or a
metal that is chelated to the resin thanks to the electron
donating ligands [405–409]. Simple precipitation of the
metal to the pores is also reported [410,411].

Physical absorption, electrochemical absorption and
covalent absorption abilities of porous resins lead to several
applications. As discussed in the sub-section on multi-
stage polymerizations, particles can swell to a great extent
by absorbing hydrophobic species. This can be used for
removing undesired species either from water [412–415]
or from organic media [416]. Moreover, gaseous species
can also be absorbed by particles [417–419]. Scavenging
is another field for which porous polymers are effectively
used [420–423]. Scavenger resins ideally possess chemical
groups that selectively react and therefore remove unde-
sired compounds from a mixture.

The size, polydispersity and even the shape are not the
most important issues for the applications mentioned so
far; on the other hand the surface area is a crucial parame-
ter. In this respect, for ion-exchange, catalysis, absorption
and scavenging applications, suspension polymerization
can be the first technique to be considered for particle
preparation. Sieving can be utilized if particles are going
to be packed into a column.

5.2. SPE and chromatography

Another absorption based application area is solid phase
extraction (SPE) [424]. Small particles packed in a cartridge
absorb (generally hydrophobic) solutes from an analyte.

Solutes are removed from the sorbent by washing with
an organic liquid in the second stage. In this way, solutes
are enriched and ready for analysis. Since the interaction
time is relatively short, a high performance of absorption is
lymer Science 37 (2012) 365– 405

requested from particles (=sorbent). In that respect, hyper-
crosslinked particles are suitable due to their extremely
high surface area. Seed preparation accompanied by hyper-
crosslinking in the second stage seems to be a suitable
approach to produce such sorbents.

Chromatography [2,270] is perhaps the most delicate
of all the mainstream applications of porous polymer
particles. In the range of 2–5 �m,  highly spherical and
narrowly monodisperse beads are necessary to obtain
reproducible results from a packed chromatographic col-
umn. Whereas silica packed columns are preferred over
polymer packed columns in HPLC, polymer particles are
mainly used in size exclusion chromatography (SEC) due
to their ‘configurable’ pore size and pore size distribu-
tion. In SEC, smaller polymer chains spend more time
in pores of packed beads compared to the larger chains,
which is the basis for the separation [425]. For a batch
of higher MW polymer to be analyzed, beads with a
higher pore size are necessary for better separation. On
the other hand, a lower average pore size is needed for
the separation of a lower MW polymer. Seeded poly-
merizations seem to be suitable for production of SEC
beads [426] since the pore size and pore size distri-
bution can be easily controlled in the second swelling
step. For HPLC columns, aerosol and precipitation [51,281]
polymerizations are also available, together with seeded
polymerizations [12,68,69,427,428].

5.3. Solid supported synthesis

A final mainstream application area of porous particles
is solid phase peptide (SPPS) and organic (SPOS) syntheses
[429,430]. Porous particles are used to some extent for SPPS
and SPOS [431,432],  however gel-type nonporous particles
are preferred over porous ones. Thanks to their very lightly
crosslinked nature (1% in general) nonporous gels can swell
to a great extent when immersed in a good solvent, such as
toluene for styrene–DVB based resins. However, if a nonsol-
vent is necessary for transformation, especially in the case
of SPOS, permanently porous resins can perform better. It
is also worth to mention that by the growth of the desired
molecule (such as peptide), space restrictions become more
prominent. Porous (especially macroporous) resins can
offer room to accommodate such large molecules and pre-
vent ‘saturation of resin’. Too small resins are not easy to
handle as supports for solid phase synthesis due to clogging
of the filters and loss of visibility by naked eye. Therefore
beads with sizes ranging from 100 to 500 �m are used
for this purpose. In addition, shape and monodispersity
are not the highest priorities. Suspension polymerization
[433] accompanied by sieving, multistage polymerizations,
microfluidics and also membrane/microchannel emulsifi-
cation methods are all appropriate.

5.4. Future applications

The previously described applications in this chap-

ter are already known for decades. In the close future,
novel applications of porous particles are expected to
emerge, providing solutions to the current problems of
our society such as energy, health-care, microreactors and
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ensing. In the field of energy, H2 is believed to replace
ossil fuels as a greener alternative soon [434]. An enor-

ous amount of research is currently being devoted to
etal-organic frameworks as H2 storage materials [435].
icroporous polymer particles may  also play a role in this

eld [436]. Carbon capture and sequestration is also one
he energy related applications for which porous polymer
articles can be useful. There are suggestions to cap-
ure CO2 from air by using base immobilized particles
437,438].

Porous hydrogel particles are already being utilized as
issue engineering scaffolds and drug delivery systems in
he field of biology and medicine [439]. Advances in the
ife sciences will require novel polymer particles. Porous
articles will also likely to play an increasing role in
icrosensors [440–442]. Finally, microreactors are receiv-

ng increasing attention because of the ability to reduce
osts and environmental effects by reaction miniaturiza-
ion [443–445]. It is well-known that polymer particles
an absorb organic species. This ability can be used to cap-
ure toxic chemicals (i.e. from wastewater) and transform
hem into harmless substances via immobilized catalysts
r enzymes.

We believe that more interesting applications may
merge if porous particles are designed with stimuli-
esponsive characteristics in the future [446]. A trigger
an be a temperature increase [447], pH change [448],
dded chemicals [191], external electric [449] and mag-
etic [223] fields, microwave radiation [450] or light [451].
he response of these smart materials can be controlled in
n automated way to obtain novel devices.

. Conclusions and outlook

This review is intended to be written in such a way that
ny researcher who has little knowledge about polymer
articles can design the path to synthesize, character-

ze and also functionalize custom made porous particles
ccording to the targeted applications. We  believe that
esearchers planning to prepare nonporous particles will
enefit as well from this manuscript since this is the
rst one to compare classical heterophase polymerizations
suspension, precipitation, dispersion and multistage) with
he newest ones (membrane/microchannel and microflu-
dics) in detail. Size, size dispersity, functionality, porous
ature and also shape of the particles have been addressed

or each synthetic method and compared in a summary
able. Characterization and functionalization strategies of
articles have been covered too, including site-specific
unctionalization. The functionalization section includes

 discussion about effective strategies including well
ccepted click chemistries. Finally, the applications section
ot only put the accent on bringing interests towards the
evelopment of new technologies, but also aims at build-

ng a correlation between the choice of synthetic method
nd the type of application.

For the future, complexity and simplicity will continue

o be the two driving forces. On one hand, novelties are
enerally connected with complex structures. On the other
and, simplicity makes it easily reachable, which is very

mportant for industrialization. Breakthroughs come out
ymer Science 37 (2012) 365– 405 395

when the two  are combined: complex in nature but simple
in design. Microfluidics was revolutionary for paving the
way to unprecedented control over size dispersity, shape
anisotropy and structure complexity of particles. A novel
or improved technique [452–454] inheriting abilities of
microfluidics but overcoming its problems such as tedious
device preparation and scalability would be another renais-
sance for particle production. Finally, unique mechanical,
packing and assembly properties of nonspherical particles
are already drawing attention [6,85,161,452,453,455–467]
but the effect of porosity on such regular nonspherical par-
ticles is still waiting to be further exploited.
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